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High-throughput screening has become a mainstay of small-mole-
cule probe and early drug discovery. The question of how to build
and evolve efficient screening collections systematically for cell-
based and biochemical screening is still unresolved. It is often as-
sumed that chemical structure diversity leads to diverse biological
performance of a library. Here, we confirm earlier results showing
that this inference is not always valid and suggest instead using
biological measurement diversity derived from multiplexed profil-
ing in the construction of libraries with diverse assay performance
patterns for cell-based screens. Rather than using results from tens
or hundreds of completed assays, which is resource intensive and
not easily extensible, we use high-dimensional image-based cell
morphology and gene expression profiles. We piloted this ap-
proach using over 30,000 compounds. We show that small-mole-
cule profiling can be used to select compound sets with high rates
of activity and diverse biological performance.

chemical diversity | biological performance diversity | biological activity |
chemical similarity

Profiling small molecules based on multiple biological activity
measurements can illuminate mechanisms of action by

comparing profiles with compounds whose mechanisms of action
are known (1–5). Here, we describe a previously unidentified use
of small-molecule profiling—enabling the creation of activity-
enriched and performance-diverse compound libraries for small-
molecule probe and drug discovery.
Biochemical and cell-based high-throughput screening (HTS)

is routinely used to discover novel bioactive molecules through
unbiased testing of up to several million compounds per screen
(6). However, despite ongoing advances in throughput, com-
pound libraries will always represent only a small fraction of all
relevant compounds theoretically accessible through chemical
synthesis (a concept often referred to as “chemical space”) (7).
Library composition therefore presents a strong source of bias
and potential limitation for any screening endeavor.
There is little dissent about the notion that a good screening

collection should yield many high-quality hits for a wide range
of biological targets or phenotypes. In other words, it should
be enriched for bioactive compounds and have high biological
performance diversity. A high percentage of compounds lacking
any activity will contribute to high cost and low performance of
a high-throughput screen. A practical example is a compound
collection containing a high percentage of compounds that fail
to penetrate cell membranes—such a library will be unlikely to
perform effectively in a cell-based HTS exploring an intracellular
process. Similarly, a screening collection of compounds with
highly redundant biological activities will be less efficient than
an equally sized library with diverse performance (Fig. 1). A

systematic path to reach these goals, however, remains elusive.
One common practice is analyzing structural features of com-
pounds to maximize chemical structural diversity. However, the
success of this approach requires that similarities and differences
in chemical structure be reflected in biological activities—a sim-
ilarity principle known to have limited applicability (8, 9). Other
common strategies include controlling physicochemical param-
eters (10), exploiting natural selection by sourcing natural
products, or relying on natural product-like analogs (11).
None of these approaches measure biological activity or per-

formance diversity directly. However, high-granularity measure-
ments of biological performance diversity have recently come
within reach through inexpensive high-throughput profiling
methods. Especially attractive are unbiased, high-dimensional
measurements relying on “universal languages” such as gene ex-
pression or cell morphology, performed as multiplexed measure-
ments in a single well. We hypothesize that these methods provide
a means to maximize biological activity and performance diversity
of a screening collection by “filtering” a starting collection of
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candidate compounds, ideally a diverse set from natural and
synthetic sources. This strategy can help avoid screening many in-
active compounds or sets with highly redundant bioactivity.
Due to the novelty of multiplexed profiling methods, this hy-

pothesis has not been tested before. However, the analysis of
biological performance and its relationship to chemical structure
has previously been undertaken using “parallel” profiles, i.e.,
compositions of results from independent cell-based or bio-
chemical measurements for a compound that were conducted one
at a time. We applied parallel cell-based assay profiling (12, 13) to
explore relationships between performance diversity and chem-
ical features such as stereochemistry (14) and skeletons (12). This
approach aimed at guiding the creation of effective screening
collections for cell-based, phenotypic HTS. We also applied
parallel biochemical assay profiling (15) to explore relationships
between protein-binding performance diversity and similar
chemical features as well as the role of origins of compounds.
The latter study addresses the problem of defining effective
screening collections for biochemistry-based HTS involving protein
binding and activity modulation (for example, enzyme inhibition).
Parallel profiling has further been used to inform compound

library design independently of chemical structure consid-
erations. In seminal work, Kauvar et al. (16) Kauvar (17), and
Beroza et al. (18) suggested selecting compounds with distinct in
vitro binding (biochemical) profiles against a panel of reference
proteins to avoid “clumps” in bioactivity space. However, thor-
ough evaluations of how these and other selection strategies
affect the performance of real-world libraries are rare.
One notable exception is a recent retrospective analysis of the

Novartis screening collection (9), showing that library subsets
selected for high performance diversity achieve high hit rates
in more assays than those selected for high chemical diversity
alone. Performance diversity was measured as the number of
unique target annotations for a set of compounds. The main
drawback of this approach is that large amounts of historical

bioactivity data are required, making it more useful for triaging
well-tested collections and less so for informing decisions about
novel libraries or library expansion.
We therefore sought to develop a high-throughput and ex-

tensible method to specify performance-diverse small-molecule
libraries for cell-based screens. To avoid the impracticalities of
conducting numerous independent assays on a novel set of small
molecules, we chose two recently developed profiling technolo-
gies where up to 1,000 measurements can be made from a single
well. The methods capture cell morphology (19) and gene ex-
pression (20) to characterize complex cell states. Unbiased
profiling has been shown to capture the mechanistic details of
a wide range of bioactivities (4, 5, 21) and we hypothesized it
would assist in defining the composition of performance-diverse
small-molecule libraries for cell-based screening. We evaluated
the performance of cell morphology and gene expression pro-
filing, using real-world screening data, and show that both
methods can be used in the specification of performance-diverse
small-molecule libraries for cell-based screens (Fig. 2). Our
results also suggest that combining the two methods may offer
greater value than either one individually.

Results
We collected cell-morphology profiles from U-2 OS osteosar-
coma cells treated with each of 31,770 compounds at a single
concentration. Our compound collection comprised 12,606
known bioactive molecules and confirmed screening hits (BIO)
as well as 19,164 novel compounds derived from diversity-
oriented synthesis (DOS). The DOS set was selected without
taking any bioactivity data into account. Changes in cell mor-
phology were measured after 48 h of treatment, using a multi-
plexed-cytological (MC) “cell-painting” assay (19). Cells were
stained with six different fluorescent markers to distinguish cel-
lular compartments and organelles. Automated microscopy and
image analysis led to profiles of 812 morphology features (19).

Cell Morphology Profiling Can Be Used to Enrich Libraries for Hits in
Phenotypic HTS. An effective library construction strategy should
preferentially select compounds that show activity in HTS. It is an
open question whether unbiased biological profiling is sensitive
and specific enough to infer activity in a range of targeted assays
from observing reproducible profiles. We found that sets of com-
pounds showing activity in theMC assay are enriched for HTS hits.
We first determined the set of “hits” for MC profiling, i.e.,

compounds that induced stable and characteristic morphological
changes in U-2 OS cells. We used the multidimensional pertur-
bation value (mp value) described by Hutz et al. (22) to measure
compound activity in profiling assays. Compounds were considered
active if they significantly differed from DMSO negative controls
(P < 0.05). As expected, due to the preselection for biological
activity in the BIO set only, the hit rate of BIO compounds in our
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Fig. 1. A performance-diverse library should cover bioactivity space with
uniformly distributed sets of compounds. Shown are schematic distributions
of performance-redundant (Left) and performance-diverse (Right) libraries
of equal size in a hypothetical 2D projection of a high-dimensional biological
activity space (pc: principal component). The diverse library probes a wider
bioactivity space with compounds of diverse biological function. For exam-
ple, the region highlighted in red is unpopulated in the redundant library
(Left). In the performance-diverse library (Right), it would be populated by
a small group of compounds having similar performance characteristics. To
illustrate, the five compounds on the right are a subset of the 19,164 di-
versity-oriented synthesis-derived compounds (DOS). They represent a clus-
ter of 14 compounds that were found to elicit a gene expression signature
not seen among other members of the DOS set or the known bioactive
molecules and confirmed screening hits (BIO). The structures of the five
compounds illustrate that not all of the members of a subset need to be
structurally similar. However, having clear SAR among biologically similar
compounds (structures 1–3) can greatly increase confidence in identified hits
and allow rapid follow-up studies.
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Fig. 2. We compared compound selection criteria based on HTS perfor-
mance diversity. Starting with a compound collection, we selected diverse
subsets by either biological profiling (MC or GE; main text) or chemical
structure. We then compared these subsets with respect to their perfor-
mance diversity across many HTS assays.
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MC assay (68.3%) exceeded the hit rate of the DOS set (37.0%; SI
Appendix, Table S1). Notably, the MC assay was able to identify
more than two-thirds of the BIO collection as active. The relatively
high hit rates could potentially arise due to statistical significance of
effect sizes that are not biologically relevant. If this is of concern,
additional constraints can be placed on the activity scores un-
derlying the P-value calculations, as suggested by the authors of the
mp-value study (22). For the purpose of this study, we chose to use
the standard threshold because we are interested in general sta-
tistical trends rather than individual high-confidence hits.
We then analyzed the HTS assay performance of these MC

assay hits. Based on HTS data from 96 cell-based screening
projects (comprising 178 individual assays and 512 different as-
say measurements) performed by the Center for the Science of
Therapeutics at the Broad Institute, we found that compounds
active in our MC assay were significantly enriched for hits in
HTS (Fig. 3). We limited our analysis to cell-based HTS assays
because the profiling described here depends on testing live cells;
profiling is thus used to define optimal libraries for cellular
screens. Importantly, these assays cover a variety of fluorescence-
and luminescence-based readouts that are dissimilar from our
image-based MC assay (SI Appendix, Tables S2–S4). Five of
these assays (67 measurements; 13%) were based on imaging
and 14 assays (14 measurements; 2.7%) used U-2 OS cells. For
each compound, we calculated a hit frequency as the fraction of
HTS assays in which it achieved a minimum absolute z score of 3
relative to the DMSO control distribution (23). The median HTS
hit frequency for compounds active in the MC assay (2.78%) was
significantly higher than for all tested compounds (1.96%; one-
sided Wilcoxon P = 4.5 × 10−17; Fig. 3A). Likewise, the set of
compounds inactive in the MC assay was significantly depleted
for HTS hits (median hit frequency = 0%; P = 1.5 × 10−27;
Fig. 3A). We conclude that activity in a morphological profiling
assay can be used to enrich screening libraries for bioactive
compounds. Furthermore, the extent of the difference between
treatment and the negative control was associated with the HTS
hit frequency. Compounds that showed larger differences and thus
stronger activity in the MC assay had larger HTS hit frequencies
(Fig. 3 B and C). This suggests that multiplexed profiling could
provide a way of flagging potentially promiscuous compounds
before they appear as false positives in numerous screens.

Compound Sets with Diverse Cell Morphology Profiles Have Diverse
Performance in Cell-Based HTS Assays. We next tested whether MC
profiling provides a practical approach to creating compound li-
braries with diverse biological performance for cell-based screens
(Fig. 2). We found that selection of compounds with diverse MC
profiles led to higher HTS performance diversity than either ran-
dom selection or selection of diverse chemical structures (Fig. 4).
We first ensured that MC profiles reliably captured similarities

and differences in biological performance with high granularity—
a prerequisite for selecting diverse bioactivities. Hierarchical clus-
tering of well-annotated BIO compounds based on their MC pro-
files grouped compounds with similar biological effects together (SI
Appendix, Fig. S1), confirming results from earlier studies (19, 24).
We then compared different compound selection criteria—MC

profile diversity, chemical structure diversity, and random selec-
tion—with respect to their ability to select compounds with
diverse HTS performance. HTS performance diversity was mea-
sured by first constructing an HTS assay profile for each com-
pound, indicating for each assay in which the compound was
tested whether it scored significantly positive (encoded as 1),
scored significantly negative (−1), or was not a hit (0). Com-
pounds were then clustered based on their HTS profiles and we
calculated (i) the absolute number of distinct clusters represented
in a compound set and (ii) the set diversity (or effective number
of distinct clusters). The set diversity is an information-theoretic
measure that takes the distribution of compounds over clusters

into account, rewarding even distributions over clusters and pe-
nalizing sets for which a large fraction of compounds fall into only
a few clusters (Fig. 4A). In summary, a maximally performance-
diverse set in this context would consist of compounds that all
have distinct HTS assay profiles. In a set lacking performance
diversity, all compounds would have the same profile (Fig. 4A).
We compared the HTS performance diversity of compound

sets selected to have (i) diverse MC profiles and (ii) diverse
chemical structures (CS) to randomly selected compound sets
(RND). To allow a direct comparison, we applied all three se-
lection methods to the same set of compounds. This “test col-
lection” consisted of all unique compounds in our experiment for
which MC profiles with reliable signal were available (mp-value
P < 0.05) and that were tested in at least 15 HTS assays to
calculate meaningful assay profiles. We further included only
compounds that were a hit in at least one HTS assay to avoid
having a large pool of all-zero HTS profiles considered perfor-
mance redundant only because the compounds had not been
tested in enough assays. If a compound had been tested multiple
times, we kept only the instance with the highest activity score
to exclude trivial redundancy due to identical treatments. In all,
7,154 compounds fulfilled these selection criteria. At baseline,
this test collection covered 665 distinct assay profile clusters and
achieved 23.9% of the maximum theoretical diversity (100%
diversity would be achieved if each cluster were represented by
the same number of compounds). This result indicates that a
considerable number of compounds fall into only a few clusters
and thus have redundant biological performance, providing a
good test case for our method.
We selected subsets ranging from n = 1 to n = 7,154 compounds,

using MC, CS, or RND as a selection criterion (SI Appendix,
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Fig. 3. Sets of compounds that are active in MC and GE profiling are
enriched for HTS hits. (A) Boxplots showing the distribution of HTS hit fre-
quencies (HF, fraction of HTS assay measurements in which a compound
scored as a hit) for compound sets in the MC study. Compared with all tested
compounds, the HF is significantly higher for compounds active in the MC
assay [median(HFall) = 1.96%; median(HFact) = 2.78%; one-sided Wilcoxon
P = 4.5 × 10−17]. Likewise, the HF is significantly lower for compounds in-
active in our MC assay [median(HFinact) = 0.00%, P = 1.5 × 10−27]. (B and C)
Compounds with higher activity in the MC assay have higher HF. HF (B) and
compound numbers on a log10 scale (C) are plotted for all compounds that
exceed a given activity score (SI Appendix). (D) Boxplots of HFs for com-
pound sets in the GE study. The set of active compounds for the GE assay is
enriched for HTS hits [(D) median(HFall) = 0.99%; median(HFact) = 3.52%; P =
2.2 × 10−28] whereas the set of inactive compounds is depleted for HTS hits
[median(HFinact) = 0.67%, P = 1.0 × 10−4]. (E and F) Compounds with higher
activity in the GE assay have higher hit frequencies.
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Fig. S2A). MC diversity selection led to the highest overall HTS
performance diversity, significantly improving over the baseline of
all compounds in the test collection while selecting only less than
a fifth of them (1,399 compounds achieve 40.0% diversity, covering
71.9% of all clusters; Fig. 4B and SI Appendix, Figs. S2A and S3A).
This value significantly exceeded the HTS performance diversity of
sets selected randomly (19.8%; 46.6% of clusters; one-sided Wil-
coxon P = 2.9 × 10−165). By contrast, the traditionally applied CS-
diversity–based selection did not lead to notably higher perfor-
mance diversity than random selection (20.2%; 47.9% of clusters;
Fig. 4B and SI Appendix, Figs. S2A and S3A). This result supports
our hypothesis that single-well biological profiling can be used to
select compound sets with diverse HTS assay performance patterns.
Technically, the diversity measure quantifies the effective

number of clusters (groups of compounds having similar HTS
performance) in a library, i.e., how many clusters with an equal
number of members would be needed to achieve the same av-
erage cluster variety in a sample drawn from that library. In
practice, this means that if the diversity is low, a few clusters will
be highly overrepresented and can easily dominate the top of
screening hit lists, especially if they are associated with relatively
nonspecific biological effects (e.g., toxicity). Random selection
conserves the relative representation of each cluster in the full
dataset; therefore, a reduction in compound numbers using

random selection (or the similarly performing selection based on
chemical structure) will lead to a loss of small clusters, i.e., rare
HTS performance patterns. Our data suggest that profile-based
selection could by contrast “compress” the HTS performance
information per tested compound in the library by a factor of 8
(40% with one-fifth of the library vs. 23.9% for all compounds),
while retaining most of the unique HTS performance patterns
(71.9%). Relative to the random and structure-based selection,
this represents a twofold increase in diversity and a 54% increase
in unique HTS performance patterns.

Gene Expression-Based Selection Can Identify Sets of Compounds
Enriched for HTS Hits and Diverse HTS Performance. We repeated
our analysis with gene expression (GE) profiles collected after
6 h of treatment. Using cost-effective ligation-mediated ampli-
fication and bead-based detection (20), we measured the ex-
pression levels of 977 protein-coding RNA transcripts per
sample. The transcripts were selected to be largely uncorrelated
and capture about 80% of the similarity information of genome-
wide expression profiles (∼22,000 transcripts; http://lincscloud.
org/the-landmark-genes/). We collected GE profiles for 17,553
DOS and 4,199 BIO compounds, the majority of which were also
part of our MC profiling experiment (SI Appendix, Tables S1 and
S5). On each plate, we included a set of positive control (POS)
compounds that have been shown to elicit strong gene expression
changes across different cell lines (4).
Almost all POS compounds were active in the GE assay

(96.6%; SI Appendix, Table S1). The GE assay “hit” rates for
bioactive compounds (39.0%) and DOS compounds (11.0%)
were lower than those of the MC assay (SI Appendix, Table S1).
A possible explanation is that we measured compounds in trip-
licate in the GE assay and in quadruplicate in the MC assay and
were thus able to detect smaller effect sizes in the MC assay.
Furthermore, the cells in the MC study were exposed to com-
pounds longer than in the GE study (48 h vs. 6 h).
Compounds active in our GE assay were significantly enriched

for hits in cell-based HTS (Fig. 3D), resembling the results from
our MC study. The median HTS hit frequency for compounds
active in the GE assay (3.52%) was significantly higher than for
all tested compounds (0.99%; one-sided Wilcoxon P = 2.2 × 10−28;
Fig. 3D). The set of compounds inactive in profiling assays was
significantly depleted for HTS hits (median hit frequency = 0.67%;
P = 1.0 × 10−4; Fig. 3D). As in the MC study, compounds that
showed larger profile differences from DMSO negative controls
and thus stronger activity in the GE assay had larger HTS hit fre-
quencies (Fig. 3 E and F). We conclude that GE profiling can in-
form the selection of collections enriched for active compounds and
possibly guide the selection of compounds based on their expected
promiscuity in HTS assays.
We repeated the diversity selection study, using GE profiles.

When clustered based on GE profiles, compounds formed
groups with related mechanisms of action (SI Appendix, Fig. S4).
We then selected a compound subset with diverse GE profiles or
CS and compared its HTS performance diversity to a randomly
selected subset (RND; Fig. 4A). Analogous to the MC study, we
selected a GE test collection of 1,363 unique compounds, which
at baseline achieved 41.5% maximum theoretical diversity and
covered 232 distinct clusters. We observed similar results to
those of the MC study (Fig. 4C and SI Appendix, Figs. S2B and
S3B). By selecting about a third of the test collection (463
compounds) GE profile diversity selection led to the overall
highest HTS diversity (47%; 73.2% of clusters), which signifi-
cantly exceeded results for the random control selection (34.4%;
59.7% of clusters; one-sided Wilcoxon P = 2.9 × 10−165). CS
diversity did not lead to higher diversity than random selection
(32.2%; 59.3% of clusters). We conclude that GE profiling can
be used to select compound sets with diverse HTS performance.
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over clusters, we then determined for each subset the HTS performance
diversity (step 3). A subset with high performance diversity would contain
compounds that are equally spread over many clusters. A subset with low
diversity would contain a large fraction of compounds that fall into only
a few HTS clusters. (B and C) Results for the subset size that achieved the
highest HTS performance diversity across all selection methods, using a ran-
dom compound selection (RND) as baseline (results on all subset sizes in SI
Appendix, Fig. S2). Asterisks indicate significant diversity increases over RND.
(B) Results for the MC study (test-collection size, n = 7,154 compounds;
subset size, nsub = 1,399). Selecting compounds with diverse MC profiles led
to significantly higher HTS performance diversity than random selection
(Wilcoxon rank-sum P = 2.9 × 10−165). (C) Results for the GE study (n = 1,363;
nsub = 463). GE diversity selection led to higher HTS performance diversity
than random selection (P = 2.9 × 10−165). For both the MC and the GE test
collection, selection based on chemical structure diversity did not notably
increase HTS performance diversity over the random control.
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Cell Morphology and Gene Expression Profilings Are Not Redundant.
The hits identified in the MC (48-h treatment) and GE assays
(6-h treatment) overlap only partially (Fig. 5A). However, the hit
sets of MC and GE are also not independent (Fisher’s exact test,
P = 3.70 × 10−94; Fig. 5A and SI Appendix, Table S5), indicating
that a compound active in one profiling assay is more likely to
also be active in the other (compared with the baseline proba-
bility of being active). When separated by compound class, DOS
compounds showed significant overlap, again indicating that the
activity in both assays is not independent. Because many of the
bioactives tested in both assays scored as “hits” (MC, 74%; GE,
38%; SI Appendix, Table S5), the overlap for the BIO set is not
significant (a large overlap is expected by chance if a large
fraction of the compounds are active in either assay).
The overlapping hits for both assays are enriched for com-

pounds that scored as positives with a high frequency in cell-
based HTS (Fig. 5B and SI Appendix, Fig. S5). Many of these
compounds are known to induce strong cellular responses (e.g.,
cytotoxic and cytostatic agents; SI Appendix, Table S6) and are
thus expected to give a strong signal in most cell-based profiling
methods. An interesting question that originates from this result
is therefore whether the hits identified in imaging and gene ex-
pression profiling assays will converge if profiling assay sensi-
tivity and specificity were further optimized or if some
bioactivities—due to mechanistic differences—can be detected
only in one of the assays. The parameters used for this study (one
cell line and different treatment times for MC and GE) limit our
ability to provide an answer to this question. However, within the
limitations of currently available methods, our data suggest that
orthogonal profiling techniques could capture a significantly
wider range of bioactivities than either method alone (Fig. 5A).
When compared directly on the set of compounds tested in both

assays, diversity selection using both MC and GE profiles led to
increased HTS performance diversity over random selection, with
MC performing better than GE (Fig. 5C and SI Appendix, Figs. S6
and S7). Again, using chemical structure diversity as a selection

criterion did not significantly improve HTS performance diversity
over random selection.

Discussion
We conclude this study by suggesting the use of multiplexed small-
molecule profiling as a strategy to construct performance-diverse
libraries for cell-based screens. We have shown that single-well
high-throughput cell morphology and gene expression profiling can
be used to select compound sets that are highly enriched for com-
pounds that score as HTS hits in cell-based assays without using
prior knowledge of the outcomes of those HTS assays. Further-
more, we can exploit the ability of cell morphology and gene ex-
pression profiling to group compounds by their mechanism of
action to support creation of a performance-diverse compound li-
brary. Existing collections can be triaged to reduce existing re-
dundancy of biological performance, and prospective library
extension and evolution can be achieved. This method is a pow-
erful partner for short and modular diversity-oriented syntheses,
where the initial focus can be on diverse structures computed to
have desirable physical and chemical properties (for example,
solubility and medicinal chemistry tractability). As we show here,
compounds can then be filtered for their performance diversity
before entering into a collection optimized for cell-based screens.
Optimally, a library should contain a few compounds for each

identified profile type that each differ slightly in their biological
performance (Fig. 1). This strategy will help to increase confi-
dence in identified hits in cases where the gene expression and
cell morphology features associated with a group of compounds
track with their performance in an HTS assay. If, in addition,
such biologically similar compounds have similar chemical
structures, these allow for easy validation and follow-up through
structure–activity relationship (SAR) studies around an identi-
fied response (25). However, there is also value in compounds
with similar biological performance but dissimilar structure (e.g.,
compounds 1–3 vs. compounds 4 and 5 in Fig. 1). Besides pro-
viding different chemical starting points, observing the same
HTS performance for such compounds is even more indicative of
related mechanisms of action, as they do not share a structural
similarity that could lead to screening artifacts. The latter
strategy represents a translation of the concept of SAR analog
series from chemical to biological space; i.e., it does not rely on
a chemical structure similarity principle.
The extent of improvement over the full library for subsets se-

lected based on chemical diversity depends on many parameters
(e.g., redundancy of the library, assay selection, resolution of the
HTS data), making it difficult to quantify without prospective anal-
yses on different libraries and assays. Although 40–50% diversity as
observed in our studies appears to leave much room for improve-
ment, 100% is a theoretical maximum that is difficult to achieve in
practice. This is especially true because we use HTS data as our
standard, which is often noisy and likely biased due to the specific
assay selection. As a pilot study for testing our results prospectively,
we have therefore plated a performance-diverse compound collec-
tion, selected using the principles described in this study. We have
started to evaluate this collection in cell-based screens.
With an ongoing reduction of both costs and technological hur-

dles associated with performing multiplexed assays, we anticipate an
increasing adoption of high-dimensional profiling assays. This would
allow our method to be readily applicable to novel screening col-
lections. Automatic microscopes used for imaging assays are already
available at many screening centers. The Luminex technology used
for the GE assay is a versatile assay system that is used for various
purposes by many laboratories. In addition, ongoing developments
in other gene expression measurement technologies (e.g., RNAseq)
will similarly simplify large-scale gene expression analyses.
Our results show that different biological profiling methods and

assay conditions currently capture different hit sets, possibly in-
cluding compounds with distinct mechanisms of action. As novel
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Fig. 5. MC and GE profiling have overlapping yet distinct hit sets. (A) Venn
diagrams of the MC and GE hit sets. Although the majority of compounds
are identified by only one of the methods, low P values (Fisher’s exact test)
indicate a nonrandom overlap between two hit sets. Both MC and GE
identify a large fraction of the BIO collection as hits; thus even high overlap
is not significant (SI Appendix, Table S5). (B) Boxplots of HTS hit frequencies
(HF, defined in Fig. 3) for active compounds tested in both the MC and the
GE study. MC, hits identified based on cell-morphology profiles; GE, hits
identified based on gene expression profiles; both, hits identified by both
MC and GE. The intersection of the sets of active compounds from the MC
and GE assay shows even stronger enrichment for compounds with high HF
[median(HFboth) = 4.41%] than either set of actives alone [median(HFMC) =
2.14%; one-sided Wilcoxon PMC = 1.4 × 10−14; median(HFGE) = 3.39%; PGE =
1.9 × 10−3]. This indicates that the MC and GE assays tend to agree on
compounds that are active in multiple HTS assays and possibly even pro-
miscuous (SI Appendix, Table S6). Asterisks indicate significant HF increases.
(C) When direct comparison was made on the intersection of the MC and GE
test collections (n = 904), we observed higher HTS performance diversity
than random selection for selection based on both MC (Wilcoxon P = 2.9 ×
10−165) and GE profiles (P = 7.1 × 10−165) when selecting about a third of the
test collection (nsub = 320). Asterisks indicate a significant diversity increase
over RND.
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profiling methods become suitable for HTS formats, they should be
evaluated, using a diverse set of cell lines (or strains, in the case of
microbial therapeutics discovery) and assay parameters, to cover
a large fraction of the theoretically possible biological measure-
ment space and to enable construction of transformative screen-
ing collections for cell-based phenotypic screens. Likewise, the
development of biochemical profiling methods should enable
construction of effective screening collections for protein-binding
and biochemical activity-modulation screens (26).

Materials and Methods
For details, see SI Appendix.

MCMorphology Profiles.We followed the protocol published by Gustafsdottir
et al. (19) After compound treatment (48 h), we stained the cells for nucleus
(Hoechst 33342), endoplasmic reticulum (Con A/AlexaFluor488 conjugate),
nucleoli (SYTO 14 green fluorescent nucleic acid stain), Golgi apparatus, and
plasma membrane (wheat germ agglutinin/AlexaFluor594 conjugate, WGA),
F-actin (phalloidin/AlexaFluor594 conjugate), and mitochondria (Mito-
Tracker Deep Red). Morphological features for each cell were obtained
through subsequent automatic image capture and analysis.

GE Profiles. We followed the protocol published by Peck et al. (20). After
compound treatment (6 h), cells were lysed and expression levels of 977
transcripts quantified using ligation-mediated amplification and Luminex
microsphere-based detection.

HTS Hit Frequency and Assay Profiles. Screening results were assembled from
an internal Broad Institute database. However, the majority of assays have
been published in ChemBank or PubChem/BARD (Datasets S1 and S2). We
calculated D scores (27) for each assay result to make them comparable
across individual assays. For hit-frequency calculations, we used a hit-calling
threshold of 3σ (relative to DMSO control), which corresponds to an absolute
D score of 3. We chose 35 assays as the lower threshold of performed assay
measurements per compound to achieve a probability of more than 50% of
being a hit in at least one assay by assuming a true hit rate of 2% per assay.
For HTS performance diversity calculations, we discretized result values in
three bins (−1, 0, 1), using a two-sided activity threshold of 2.5%. We used
a lower threshold than for hit calling because the result values were com-
bined into profiles that were exclusively used in similarity calculations. In
addition to the denoising effect of considering multiple measurements,
capturing weakly active compounds is more important for profile similarity

than for overall hit frequency calculations. Accordingly, the minimum
number of assay measurements was decreased to 15.

Diversity Selection. From a set of n compounds, we selected series of diverse
compound subsets Si ,i∈ ½1,n�, based on MC profiles, GE profiles, and extended-
connectivity fingerprints (ECFP4), using a maximum dissimilarity strategy. A ran-
dom compound was chosen as the starting set S1. To create Si+1, we iteratively
added the compound that was most dissimilar to its closest neighbor in Si until
no compounds were left to add (full set Sn). This selection process was repeated
500 times, each time with a random starting compound. Dissimilarity for GE and
MC profiles was calculated as pairwise correlation distance (1 − Pearson corre-
lation coefficient) between profiles. Chemical dissimilarity was measured using
Jaccard distance (28) on stereochemistry-aware ECFP4 fingerprints (ECFP4#S) (29).

HTS Performance Diversity.We hierarchically clustered compounds based on
their HTS assay profiles, using weighted-average linkage applied to Jaccard dis-
tances. The resulting dendrogram was cut at a distance of 0.8 to obtain final
cluster assignments. We calculated the performance diversity for a set of com-
pounds C as the effective number of HTS clusters using the true diversity D (30):

D= exp

 
−
XR
i=1

pi lnpi

!
= eH:

Here, R is the number of distinct clusters in C, pi is the fraction of compounds
in C that are members of cluster i, and H is the Shannon entropy (30).
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Supporting	Materials	and	Methods	

Compound	selection	

The	 DOS	 compound	 collection	 represents	 a	 structurally	 diverse	 subset	 of	 19,637	 compounds	
selected	 from	23	DOS	 libraries.	 (1‐8)	 These	 libraries	were	 synthesized	 using	 a	 build‐couple‐pair	
strategy	 (9)	 to	 combine	 simple	 chiral	building	blocks	 into	diverse	 and	 complex	 compounds.	 (10)	
Each	library	is	built	around	a	common	chiral	core	by	varying	side	chains	and	the	configurations	of	
core	stereocenters.	For	most	compounds,	all	stereoisomers	were	synthesized.	

For	each	library,	we	determined	the	set	of	unique	stereochemical	“parent”	structures,	i.e.,	structures	
with	 unspecified	 stereochemistry.	 We	 exposed	 these	 sets	 to	 a	 maximum	 dissimilarity	 selection	
algorithm	 using	 Tanimoto	 similarity	 (11)	 on	 ECFP4	 fingerprints	 (12)	 for	 each	 chiral	 core	
separately.	 In	 collaboration	 with	 the	 Broad	 Institute	 Discovery	 Chemistry	 and	 Compound	
Management	 teams,	we	determined	 the	desired	proportion	of	 compounds	 from	each	 library,	 and	
for	 those	 stereochemical	 parents	 selected,	 included	 all	 stereoisomers	 with	 physical	 samples	
available.	

The	 BIO	 collection	 comprised	 three	 different	 compound	 sets.	 First,	 we	 included	 2,222	 drugs,	
natural	products,	and	small‐molecule	probes	 that	are	part	of	 the	Broad	Institute	known	bioactive	
compound	collection.	The	collection	contains	structurally	diverse	compounds	across	a	wide	range	
of	biological	activities	with	known	 targets	 for	many	compounds.	Second,	we	extended	 this	 set	by	
selecting	274	hits	or	structural	analogs	from	various	probe‐development	projects	sponsored	by	the	
Molecular	 Libraries	 Program	 (MLP).	 Third,	 we	 selected	 10,162	 compounds	 from	 the	 Molecular	
Libraries	Small	Molecule	Repository	(MLSMR).	Assay	activity	data	from	Molecular	Libraries	Probe	
Production	 Centers	 (MLPCN)	 screening	 centers	 reported	 as	 percent	 activity	were	 retrieved	 from	
PubChem	 (http://pubchem.ncbi.nlm.nih.gov/).	 To	 include	 bioactive	 but	 not	 promiscuous	
compounds,	we	 kept	 only	 compounds	 that	 had	 been	 tested	 in	 >50%	of	 all	 assays	 (unique	AIDs)	
performed	on	the	MLSMR	collection	and	that	were	hits	in	at	least	2	but	fewer	than	10%	of	assays	
tested.	 Compounds	 were	 selected	 to	 cover	 many	 different	 chemical	 structures	 and	 biological	
activities.	

Differences	between	the	total	compound	numbers	reported	here	and	those	in	Table	S1	are	due	to	
quality	control	filters	on	GE	and	MC	experimental	data.	

	

Gene‐expression	assay	

We	followed	the	protocol	published	by	Peck	et	al.	(13)	Briefly,	we	seeded	3,500	U‐2	OS	cells	(ATCC,	
cat.	 no.	 HTB‐96)	 per	 well	 in	 384‐well	 plates.	 After	 24h	 of	 incubation	 at	 37°C,	 compounds	 were	
added	to	the	cells,	followed	by	another	6h	of	incubation.	Treatments	were	carried	out	in	triplicates.	
The	cells	were	then	lysed	and	lysates	transferred	to	oligo‐dT	plates	to	capture	mRNAs.	We	reverse‐
transcribed	 mRNA	 and	 amplified	 cDNA	 via	 polymerase	 chain	 reaction	 (PCR).	 We	 annealed	 the	
cDNA	to	a	mix	of	upstream/downstream	probe	pairs,	each	of	which	was	designed	to	be	specific	for	
one	of	977	transcripts.	Each	upstream	probe	consisted	of	a	universal	20‐nucleotide	(nt)	primer	site	
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(complementary	to	T7	primer),	a	unique	24‐nt	barcode	sequence,	and	a	24‐nt	sequence	designed	to	
bind	 to	 the	 3’‐end	 of	 one	 specific	 transcript.	 Downstream	 probes	 were	 designed	 to	 anneal	
contiguous	 to	 their	 corresponding	 upstream	 probe	 on	 the	 transcript.	 They	 consist	 of	 a	 5’‐
phosphorylated	 20‐nt	 transcript‐specific	 sequence	 and	 a	 20‐nt	 universal	 primer	 site	 (T3).	 Any	
unbound	probes	were	 removed	after	 the	annealing	 step.	Only	upstream	and	downstream	probes	
that	bound	next	to	each	other	on	a	transcript	cDNA	molecule	were	ligated	in	the	next	step	and	then	
amplified	by	PCR	using	T3	and	5’‐biotinylated	T7	primers.	We	added	these	amplicons	to	a	mix	of	
color‐coded	Luminex	microspheres,	each	of	which	carried	capture	probes	complementary	to	one	of	
the	barcode	sequences	in	the	amplicons.	Streptavidin‐phycoerythrin	was	added	to	add	fluorescent	
markers	to	the	biotinylated	amplicons.	The	number	of	captured	amplicons	was	then	quantified	by	
flow	 cytometry	 measuring	 phycoerythrin	 fluorescence.	 Transcript	 identity	 was	 identified	 by	
microsphere	color.	

Gene‐expression:	cell	plating	and	compound	treatment	

1. U‐2	OS	cells	(ATCC,	cat.	no.	HTB‐96)	
2. 384	well	plates	(Corning,	cat.	no.	3712)	
3. culture	medium	

− DMEM	(Fisher	Scientific,	cat.no.	MT10017CV)	
− 10%FBS	(Life	technologies,	cat.no.	10437028)	
− 1%	penicillin‐streptomycin	(Fisher	Scientific,	cat.	no.	MT30002CI)	

4. TCL	buffer	(Quiagen,	cat.	no.	1031576)	
5. cold‐storage	adhesive	sealing	foil	(VWR,	cat.	no.	89049‐034)	

3500	U‐2	OS	cells	per	well	were	plated	in	384‐well	plates	with	50	L	culture	medium.	After	24	h	of	
incubation	 at	 37C,	 compounds	were	 added.	 Cells	 were	 treated	 for	 6	 h	 at	 37C	 before	 40	L	 of	
medium	was	removed	and	30	L	TCL	buffer	added	to	lyse	the	cells.	Plates	were	sealed	with	sterile	
sealing	foil	and,	after	30	min	incubation	at	room	temperature	(RT),	stored	at	‐80C.	

	

Gene‐expression:	sample	preparation	and	measurement	

We	 closely	 followed	 the	 protocol	 published	 by	 Peck	 et	 al.	 (13)	 Differences	 from	 the	 published	
materials	and	methods	are	summarized	below.	A	detailed	protocol	follows.	

1. Luminex	microspheres:	we	used	MagPlex	instead	of	COOH	
2. bead	coupling	preparation:	we	used	a	different	volume	of	beads	and	wash	solutions	
3. probe	hybridization:	we	introduced	a	ramp‐down	of	annealing	temperatures	
4. polymerase:	we	used	HotStarTaq	Plus	instead	of	HotStarTaq	
5. PCR	cycling	conditions	were	different	(29	cycles,	1min	step	times)	
6. to	measure	 all	 transcripts,	 we	 used	 2	 different	 bead	mixes	 per	 sample	 during	 detection;	

furthermore,	a	different	volume	of	each	mix	was	used	
7. bead/amplicon	hybridization	time:	increased	from	1	h	to	16	h	–	20	h	
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8. we	 introduced	 bead	 washes	 before	 and	 after	 streptavidin‐phycoerythrin	 addition	 during	
detection,	including	new	wash	solutions	

9. Luminex	detection	instrument:	we	used	FlexMap	3D	instead	of	Luminex	100	
	

General	Notes	

All	liquid	transfers	were	automated	on	the	Agilent	Bravo	Liquid	Handling	Platform.	Between	each	
step	of	the	LMA	protocol,	unreacted	products	were	removed	by	inverting	the	reaction	plate	onto	a	
laboratory	towel	and	centrifuging	at	1000	g	for	1	min.	All	non‐room‐temperature	incubations	took	
place	on	a	Thermo	Electron	MBS	384	Satellite	Thermal	Cycler.	

Luminex	microsphere	(bead)	preparation	

Materials:	

1. Luminex	xMAP	MagPlex	microspheres	
2. bead	binding	buffer	

− 0.1	M	2‐(N‐morpholino)ethansulfonic	acid	(pH	4.5)	
3. EDC	solution	

− 10	mg/mL	1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide	hydrochloride	in	water.	
4. 0.02%	Tween	
5. 0.1%	sodium	dodecyl	sulfate	
6. TE	(pH8)	

− 10	mM	Tris‐HCl	(pH	8.0)	
− 1	mM	EDTA	

	
Luminex	xMAP	MagPlex	microspheres	were	coupled	to	anti‐barcode	capture	oligonucleotides.	490	
distinct	 microsphere	 species	 were	 aliquoted	 into	 800μL	 round‐bottom	 deep	 well	 96	 plates,	
approximately	 12.5	 x	 106	 mirospheres	 per	 well.	 Beads	 were	 pulled	 down	 by	 centrifugation	 and	
magnetic	separation,	storage	buffer	was	removed,	and	beads	were	re‐suspended	in	130	μL	binding	
buffer.	500	pmol	of	capture	probe	was	added	to	each	microsphere	well,	such	that	each	microsphere	
species	well	received	a	different	probe.	5	μL	of	a	freshly	prepared	EDC	solution	was	added,	and	the	
reactions	were	incubated	for	30	min.	EDC	addition	was	repeated	a	second	time.	Microspheres	were	
then	captured	by	magnetic	pull‐down	and	washed	successively	in	500	μL	of	Coupling	0.02%	Tween,	
0.1%	sodium	dodecyl	sulfate,	and	TE	(pH	8).	Coupled	microspheres	were	re‐suspended	in	TE	(pH	
8)	and	pooled	 to	a	 final	 concentration	of	50,000	microspheres/μL.	This	pool	 constituted	 the	 first	
coupled	microsphere	set,	referred	to	as	dp52.	

This	process	was	repeated,	such	that	the	same	490	microsphere	species	were	coupled	to	a	different	
set	of	capture	oligonucleotides,	forming	the	second	coupled	microsphere	set	dp53.	

Finally,	 10	 microsphere	 species	 were	 coupled	 to	 80	 different	 capture	 oligonucleotides,	 8	
oligonucleotides	 per	 microsphere	 species,	 to	 form	 a	 coupled	 microsphere	 pool	 assaying	 10	
invariant	meta‐genes.	

Ligation	Mediated	Amplification	
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RNA	extraction	

Materials:	

1. Turbocapture	384	mRNA	kit	(Qiagen,	cat.	no.	72271)	
	

Frozen	lysate	was	thawed	for	1	h	at	room	temperature.	20	μL	of	 lysate	was	transferred	to	a	384‐
well	 oligo‐dT	 capture	 plate,	 and	 incubated	 at	 room	 temperature	 for	 1h.	 During	 this	 incubation,	
mRNA	was	immobilized	to	the	plate	via	binding	of	the	poly‐A	tail.	

	

cDNA	Generation	

Materials:	

1. M‐MLV	Reverse	Transcriptase	kit	(Promega,	cat.	no.	M1705)	
2. 100mM	dNTP	set	(Invitrogen,	cat.	no.	10297018)	

	
cDNA	was	generated	from	immobilized	mRNA	via	reverse	transcription.	A	5	μL	M‐MLV	reaction	mix	
was	added	to	the	reaction	plate	and	incubated	at	37C	for	1.5	h.	

	

Probe	Hybridization	

1. pool	of	custom	up‐	and	down‐stream	probes	
2. Taq	 DNA	 Ligase	 Reaction	 Buffer	 (NEB,	 cat.	 no.	 B0208S),	 used	 to	 prepare	 probe‐pool	

working	dilution	
	

Custom	up‐	and	down‐stream	probes	were	hybridized	to	the	cDNA.	Upstream	probes	contained	20	
nt	 of	 gene‐specific	 sequence,	 a	 24	 nt	 FlexMap	 barcode,	 and	 the	 T7	 priming	 site.	 Down‐stream	
probes	 contained	 20	 nt	 of	 gene‐specific	 sequence	 (designed	 to	 bind	 adjacent	 to	 the	 upstream	
probe)	and	the	T3	priming	site.	Hybridization	consisted	of	a	5	min	95°C	denature	followed	by	an	
annealing	 ramp‐down	 from	 70°C	 to	 40°C,	 12	 min	 per	 degree.	 The	 reaction	 was	 held	 at	 4°C	
overnight.	

	

Probe	Ligation	

Materials:	

Taq	DNA	ligase	kit	(NEB,	cat.	no.	M0208L)	
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Bound	probes	were	ligated	via	a	5	μL	Taq	DNA	ligase	reaction,	incubated	at	45°C	for	1	h,	followed	
by	65°C	for	10	min.	

	

PCR	Amplification	

Materials:	

1. HotStarTaq	Plus	DNA	polymerase	kit	(Qiagen,	cat.	no.	203603)	
2. 100mM	dNTP	set	(Invitrogen,	cat.	no.	10297018)	

	
Ligated	 probes	 form	 a	 template	 competent	 for	 PCR	 using	 T3	 and	 T7	 universal	 primers.	 The	 T7	
primer	was	 biotinylated.	 A	 15	 μL	HotStarTaq	 Plus	 reaction	mix	was	 added	 to	 the	 plate,	 and	 the	
following	PCR	program	performed:	

a. initial	denature:	15	min	@	92°C	
b. 29	amplification	cycles:	1	min	@	92°C	–	1	min	@	60°C	–	1	min	@	72°C	
c. final	extension:	5	min	@	72°C	

	

Hybridization	and	Detection	

Microsphere	Hybridization	

Materials:	

1. dp52	coupled	bead	set	
2. dp53	coupled	bead	set	
3. invariant‐gene	bead	set	
4. 1.5x	TMAC	hybridization	solution	

− 4.5	M	tetramethylammonium‐chloride	
− 0.15%	N‐lauryl	sarcosine	
− 75	mM	Tris‐HCl	(pH	8)	
− 6	mM	EDTA	

	

Dilutions	 of	 each	 coupled	 flexmap	microsphere	 set	 dp52	 and	dp53	were	 prepared	 in	 1.5x	 TMAC	
hybridization	 solution,	 such	 that	 each	 reaction	 ultimately	 contained	 about	 200	 microspheres	 of	
each	species.	Additionally,	“invariant‐gene”	microspheres	were	added	to	each	dilution	at	a	similar	
concentration.	 Invariant	 genes	 were	 genes	 selected	 to	 show	 relatively	 stable	 expression	 levels	
(coefficient	of	variation	<	10%)	across	a	large	number	of	distinct	reference	samples.	Eight	invariant	
genes	were	selected	at	each	of	10	expression	levels.	For	each	expression	level,	all	8	invariant	genes	
were	 combined	 on	 one	 bead	 species.	 23	 μL	 of	 diluted	 microspheres	 are	 plated	 in	 384.	 5	 μL	 of	
amplified	LMA	product	was	added	to	a	dp52	dilution	well	and	another	5	μL	to	a	dp53	dilution	well.	
Samples	 were	 arranged	 such	 that	 the	 dp52	 and	 dp53	wells	 were	 found	 on	 the	 same	 plate.	 The	
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resulting	detection	plate	therefore	contained	192	samples	assayed	on	both	bead	sets.	The	detection	
plate	was	denatured	at	95°C	for	2	min,	and	incubated	at	45°C	for	16	h	–	20		h	overnight.	

	

Microsphere	Detection	

Materials:	

1. 1x	TMAC	hybridization	solution	
− 3	M	tetramethylammonium‐chloride	
− 0.1%	N‐lauryl	sarcosine	
− 50	mM	Tris‐HCl	(pH	8)	
− 4	mM	EDTA	

2. low‐stringency	wash	buffer	
− 6x	SSPE	
− 0.01%	Tween‐20	

3. high‐stringency	wash	buffer	
− 0.1x	MES	
− 25	mM	NaCl	
− 0.01%	Tween‐20	

4. reporter	mix	
− 3%	streptavidin‐phycoerythrin	(Invitrogen,	cat.	no.	S866)	in	1x	TMAC	hybridization	

solution	
	

Microspheres	 were	 captured	 in	 the	 detection	 plate	 by	 centrifugation	 at	 1000	 rpm	 for	 1	 min	
followed	by	magnetic	pull‐down.	Microspheres	were	washed	successively	 in	 low‐stringency	wash	
buffer	and	high‐stringency	wash	buffer.	10	μL	of	reporter	mix	were	added	to	each	sample.	Samples	
were	 incubated	 at	 45°C	 for	 10	min	 to	 allow	 streptavidin‐phycoerythrin	 to	 bind	 the	 biotinylated	
amplicons.	 Samples	 were	 then	 centrifuged,	 magnetically	 pulled	 down,	 and	 washed	 with	 low‐
stringency	 wash	 buffer	 and	 3	 times	 with	 1X	 TMAC	 wash	 solution.	 Labeled	 and	 washed	
microspheres	were	analyzed	using	the	Luminex	FlexMap	3D	detector.	

	

Gene‐expression	assay:	data	processing	

Raw	 fluorescence	 intensity	 curves	 were	 processed	 by	 a	 peak‐detection	 algorithm	 to	 yield	
expression	 values	 for	 each	 transcript	 in	 a	 sample.	 For	 each	 sample,	 the	 binary	 logarithms	 of	
expression	values	were	normalized	based	on	80	pre‐determined	“invariant	genes”,	 i.e.,	genes	that	
show	relatively	stable	expression	 levels	(coefficient	of	variation	<	10%)	across	a	 large	number	of	
distinct	reference	samples.	Eight	 invariant	genes	were	selected	at	each	of	10	expression	 levels.	A	
calibration	 curve	was	 computed	 for	 each	 sample	 using	 the	median	 expression	 of	 these	 invariant	
genes.	 Samples	were	 then	 rescaled	 using	 a	 reference	 curve	 computed	 from	 a	 large	 collection	 of	
expression	 profiles	 and	 limited	 to	 the	 range	 [0,	 15]	 (http://lincscloud.org/how‐data‐were‐
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prepared/).	 Detailed	 descriptions	 of	 the	 data‐collection	 and	 data‐processing	 pipeline	 will	 be	
published	separately	by	the	NIH	LINCS	project,	and	are	summarized	online	(http://lincscloud.org/).	

	

Gene‐expression	array:	data	normalization	and	correction	

For	each	plate,	the	distributions	of	per‐well	gene‐expression	levels	were	quantile	normalized.	(14)	
Plate	medians	for	all	transcripts	were	subtracted	from	each	well	profile.	Positional	effects	for	each	
gene	 were	 corrected	 using	 GeneData	 Screener	 Assay	 Analyzer.	 (15)	 Robust	 Z‐scores	 were	
calculated	by	dividing	the	resulting	values	by	1.4826	*	plate	median	absolute	deviation	(MAD).	We	
then	 calculated	 Stouffer’s	 Z‐score	 (16)	 to	 combine	 replicates	 into	 the	 final	 profiles	 for	 each	
compound.	

	

Multiplexed	cytological	imaging	assay	

We	followed	the	protocol	published	by	Gustafsdottir	et	al.	(17)	Briefly,	we	seeded	1,500‐2,000	U‐2	
OS	 cells	 (ATCC,	 cat.	 no.	 HTB‐96)	 per	 well	 in	 384‐well	 clear‐bottom	 imaging	 plates.	 After	 24h	 of	
incubation	 at	 37°C,	 compounds	were	 added	 to	 the	 cells,	 followed	 by	 another	 48h	 of	 incubation.	
Treatments	were	 carried	 out	 in	 quadruplicates.	We	 then	 stained	 six	 different	 cell	 compartments	
and	 organelles	 with	 fluorescent	 dyes:	 nucleus	 (Hoechst	 33342),	 endoplasmic	 reticulum	
(concanavalin	A/AlexaFluor488	conjugate),	nucleoli	(SYTO	14	green	fluorescent	nucleic	acid	stain),	
Golgi	 apparatus,	 and	plasma	membrane	 (wheat	 germ	agglutinin/AlexaFluor594	conjugate,	WGA),	
F‐actin	(phalloidin/AlexaFluor594	conjugate)	and	mitochondria	(MitoTracker	Deep	Red).	WGA	and	
Mitotracker	were	added	to	living	cells.	The	remaining	stains	were	carried	out	after	cell	fixation	with	
16%	paraformaldehyde.	Images	were	captured	in	5	fluorescent	channels	from	9	sites	per	well	(20×	
magnification).	 We	 used	 the	 CellProfiler	 image‐analysis	 software	 to	 calculate	 morphological	
features	for	each	cell.	(17)	

Multiplex	cytological	imaging	assay:	materials	

1. U‐2	OS	cells	(ATCC,	cat.	no.	HTB‐96)	
2. Aurora	384‐well	black/clear	bottom	plates,	imaging	quality	(Brooks,	cat.	no.	1022‐11330)	
3. culture	medium	

− DMEM	(Fisher	Scientific,	cat.no.	MT10017CV)	
− 10%FBS	(Life	Technologies,	cat.no.	10437028)	
− 1%	penicillin‐streptomycin	(Fisher	Scientific,	cat.	no.	MT30002CI)	

4. Mitotracker	Deep	Red	(Invitrogen,	cat.	no.	M22426)	
5. wheat	germ	agglutinin	Alexa	594	conjugate	(Invitrogen,	cat.no.	W11262)	
6. paraformaldehyde	16%,	methanol	free	(Electron	Microscopy	Sciences,	cat.	no.	15710‐S)	
7. Hank's	Balanced	Salt	Solution,	HBSS	(Invitrogen,	cat.	no.	14065‐056)	
8. Triton	X‐100	(Sigma,	cat.	no.	T8787)	
9. phalloidin	594	(Invitrogen,	cat.	no.	A12381)	
10. concavalin	A	488	(Invitrogen,	cat.	no.	C11252)	
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11. Hoechst	33342	(Invitrogen,	cat.	no.	H3570)	
12. SYTO	14	green	fluorescent	nucleic	acid	stain	(Invitrogen,	cat.no.	S7576)	
13. sodium	biocarbonate	(HyClone,	cat.	no.	SH30033.01)	
14. methanol	(BDH,	cat.	no.	67‐56‐1)	
15. bovine	serum	albumin	
16. REMP	blue	thermo	heat	seal	(REMP/Nexus	Biosystems,	cat.	no.	1800336)	
17. ImageXpress	Micro	(Molecular	Devices)	

	

Multiplex	cytological	imaging	assay:	assay	protocol	

U‐2	OS	cells	were	plated	at	a	density	of	1500‐2000	cells	per	well	with	50	L	culture	medium.	After	
24	 h	 incubation	 at	 37C,	 compounds	 were	 added.	 Cells	 were	 treated	 for	 48	 h	 at	 37C.	 A	 1	 mM	
solution	 of	 Mitotracker	 in	 DMSO	 and	 a	 1	 mg/mL	 solution	 of	 wheat	 germ	 agglutinin	 (WGA)	 in	
distilled	water	were	used	to	prepare	a	staining	solution	of	500nM	Mitotracker	and	60	g/mL	WGA	
in	 pre‐warmed	 medium.	 After	 removal	 of	 40	 L	 of	 media	 from	 the	 cells,	 30	 L	 of	 the	 staining	
solution	were	added	to	each	well	and	incubated	for	30	min	at	37C.	Cells	were	fixed	for	20	min	at	
RT	with	10	L	paraformaldehyde	and	afterwards	washed	once	with	70	L	HBSS.	To	permeabilize	
cells,	30	L	of	a	0.1%	solution	of	Triton	X‐100	in	1x	HBSS	were	added,	incubated	for	10‐20	min,	and	
washed	two	times	with	70	L	1xHBSS.	Concanavalin	A	was	dissolved	to	1	mg/mL	in	0.1	M	sodium	
bicarbonate	 solution.	 Phalloidin	 was	 dissolved	 in	 1.5	 mL	 methanol	 per	 vial.	 Staining	 mix	 was	
prepared	from	0.025	μL	phalloidin/μL,	100	μg/mL	Concanavalin,	5	μg/mL	Hoechst,	and	3μM	SYTO	
staining	solution	in	1x	HBSS	1%	BSA.	Aliquots	of	30	μL	staining	mix	were	added	to	each	well	and	
incubated	for	30	min.	After	staining,	cells	were	washed	three	times	with	70	μL	1xHBSS	without	final	
aspiration.	Plates	were	thermally	sealed	at	171C	(4	seconds).	

	

Multiplex	cytological	imaging	assay:	image	capture	

We	captured	images	on	an	ImageXpress	Micro	epifluorescent	microscope.	We	recorded	9	sites	per	
well	at	20x	magnification	 in	5	 fluorescent	channels,	DAPI	(387/447	nm),	GFP	(472/520	nm),	Cy3	
(531/593	nm),	TexasRed	(562/642	nm),	Cy5	(628/692	nm).	The	first	site	of	each	well	was	used	for	
laser‐based	auto‐focus	in	the	DAPI	channel.	

	

Multiplex	cytological	imaging	assay:	image	analysis	and	data	processing	

CellProfiler	 (18)	 software	 version	 2.0.9925	 was	 used	 to	 locate	 and	 segment	 cells	 and	 measure	
morphological	features	for	each	cell.	We	used	pipelines	described	and	provided	by	Gustafsdottir	et	
al.	(17)	to	correct	for	uneven	illumination	and	segment	cells	into	nuclei	and	cytoplasm.	Size,	shape,	
texture, intensity	statistics,	and	local	density	were	measured	for	nuclei,	cytoplasm,	and	entire	cells.	
(17)	Cell‐morphology	 features	were	normalized	by	 linearly	 scaling	 the	1st	 and	99th	percentiles	of	
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the	DMSO‐control	distributions	to	0	and	1,	respectively.	Plate	medians	were	subtracted	from	each	
profile	and	positional	effects	corrected	with	GeneData	Screener	Assay	Analyzer.	(15)	

	

HTS	assay	information	

HTS	assay	results	were	assembled	from	an	 internal	database	at	 the	Broad	Institute.	However,	 for	
the	 majority	 of	 assays,	 results	 have	 been	 deposited	 in	 public	 databases	 (ChemBank	 and	
PubChem/BARD;	Datasets	 S1	 and	 S2).	We	 distinguished	 between	 screening	 projects,	 assays,	 and	
individual	 assay	 measurements	 with	 screening	 projects	 representing	 the	 highest	 level	 of	
organization	in	the	respective	database.	For	ChemBank,	assays	were	defined	as	all	experiments	in	a	
screening	project	that	share	the	same	detection	method.	Assay	measurements	were	defined	as	all	
experiments	in	an	assay	that	share	the	same	experimental	conditions	and	time	point.		

For	 PubChem/BARD	 and	 internal	 screening	 projects,	 assays	 were	 defined	 as	 annotated	 by	 the	
experimenter	 who	 submitted	 the	 screen.	 Assay	 measurements	 were	 defined	 as	 all	 direct	
measurements	 and	 calculated	 values	 that	 convey	 information	 different	 from	 the	 direct	
measurements	(e.g.,	a	ratio	of	two	direct	measurements).	

	

Compound	activity	for	profiling	assays	and	activity	score	

We	used	 the	multidimensional	 perturbation	 value	 (mp‐value)	 as	described	by	Hutz	 et	 al.	 (19)	 to	
determine	 compound	 activity	 in	 profiling	 screens.	 The	 profiles	 for	 all	 replicates	 of	 a	 compound	
within	 a	 batch	 were	 combined	 into	 a	 matrix	 with	 the	 profiles	 from	 the	 corresponding	 negative	
DMSO‐control	 wells	 in	 the	 same	 batch	 such	 that	 rows	 represent	 wells	 and	 columns	 represent	
profiling	features.	The	matrix,	generated	for	each	compound	separately,	was	then	standardized	by	
first	 calculating	 a	 z‐score	 across	 rows	 and	 then	 columns.	 Principal	 component	 analysis	 was	
performed	 on	 the	 standardized	matrices	 and	 the	 first	 n	 principal	 components	 that	 sum	 up	 to	 a	
variance	 of	 0.9	 were	 retained.	 Each	 of	 these	 n	 principal	 components	 was	 weighted	 by	 the	
percentage	of	variance	it	explains	(by	multiplying	the	matrix	with	the	vector	of	variances)	to	obtain	
the	normalized	matrix	P.	

P	 was	 split	 into	 treatment	 and	 control	 rows	 and	 for	 each	 of	 the	 parts	 a	 covariance	 matrix	 was	
calculated.	Each	of	two	covariance	matrices	(treatment	and	control)	was	weighted	by	the	number	of	
samples	 in	each	group.	The	 sum	of	 the	 resulting	matrices	was	used	 to	 calculate	 the	Mahalanobis	
distance	between	treatment	and	control	samples.	

To	 calculate	 a	 p‐value	 based	 on	 the	Mahalanobis	 distance,	we	 performed	 an	 empirical	 test	with	
1000	 permutations.	 Each	 time	 the	 treatment/control	 labels	 were	 randomly	 assigned	 and	 the	
distance	recalculated	to	estimate	a	distribution	of	distances.	A	p‐value	was	then	calculated	as	 the	
fraction	of	distance	values	that	are	equal	to	or	larger	than	the	real	distance	value.	Compounds	with	
a	p‐value	lower	than	0.05	were	considered	active.	
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We	 calculated	 a	 normalized	 “activity	 score”	 to	 use	 the	 calculated	 Mahalanobis	 distance	 as	 an	
additional	 constraint	 for	 activity	 (as	 suggested	by	Hutz	 et	 al.	 (19)).	We	 scaled	 the	distribution	of	
distances	for	all	compounds	linearly	such	that	the	[0.2,	99.8]‐percentile	range	mapped	to	[0,	1].	

Promiscuity	probability	

The	probability	of	a	compound	showing	promiscuous	HTS	assay	activity	(or	‘cross‐reactivity’)	was	
calculated	according	to	Dančík	et	al.	(20)	Based	on	past	screening	results,	we	calculated	the	mean	
(0.13)	and	standard	deviation	(0.012)	of	hit	frequencies	for	all	compounds.	These	values	were	used	
to	determine	parameters	α	and	β	of	a	beta‐distribution:	

ߤ ൌ
ߙ

ߙ  ߚ
,	

ଶߪ ൌ ߙሺߚߙ  ߙሻିଶሺߚ  ߚ  1ሻିଵ	

For	each	compound,	we	determined	the	number	of	assays	N	in	which	it	was	tested,	and	the	number	
of	 assays	n	 in	which	 it	 scored	as	 a	hit	 and	 calculated	 the	probability	of	having	 a	hit	 frequency	ߠ	
higher	than	ߠ ൌ 0.25	using	the	MATLAB	function	betainc,	

ܲሺߠ  ሻߠ 	ൌ ,ߠሺܿ݊݅ܽݐܾ݁	 ݊  ܰ,ߙ െ ݊  ,ߚ 	.ᇱሻݎ݁ݑ′ 	
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Supporting	Figures	

Figure	S1.	Annotated	bioactive	compounds	clustered	based	on	MC	profiles	form	groups	with	
similar	biological	effects.	

We	 hierarchically	 clustered	 all	 compounds	 of	 the	 MC	 hit	 set	 for	 which	 a	 common	 name	 was	
available	based	on	their	imaging	profiles.	We	used	complete	linkage	applied	to	correlation	distance	
(1‐Pearson	coefficient).	Compounds	that	do	not	have	a	neighbor	closer	than	0.2	correlation	distance	
are	omitted	for	clarity.	Compound	names	are	reported	next	to	the	dendrogram.	Where	known,	the	
compound’s	 primary	 biological	 effect	 or	 use	 is	 reported.	 If	 groups	 of	 compounds	 with	 related	
biological	effects	co‐cluster,	their	common	effect	is	summarized	(indicated	by	a	larger	font	size).	
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Figure	S2.	MC	and	GE	profile	diversity	leads	to	HTS	outcome	diversity.	

We	compared	the	HTS	outcome	diversity	 for	subsets	of	compounds	selected	from	(a)	 the	MC	test	
collection	and	(b)	the	GE	test	collection.	The	subsets	were	selected	to	have	diverse	MC	profiles,	GE	
profiles,	or	chemical	structures	(CS),	as	indicated	by	the	label	for	each	curve.	We	compared	the	HTS	
performance	 diversity	 of	 sets	 selected	 based	 on	 MC	 or	 GE	 profile	 diversity	 or	 CS	 diversity	 to	
randomly	selected	compound	sets	of	the	same	size	(RND).	

Diverse	subset	selection	from	the	hit‐sets	was	performed	iteratively	using	a	maximum	dissimilarity	
strategy.	The	first	compound	in	this	process	was	selected	randomly.	We	then	iteratively	added	the	
compound	to	the	growing	list	that	had	the	most	dissimilar	MC	profile	(GE	profile;	CS)	to	the	already	
selected	 ones.	We	monitored	 the	 change	 in	HTS	 performance	 diversity	 throughout	 this	 selection	
process.	 HTS	 performance	 diversity	 was	 measured	 as	 the	 “true	 diversity”	 (see	 Methods).	 This	
measure	penalizes	 redundancy	and	over‐representation	of	 individual	profiles	 in	 a	 compound	set.	
Therefore,	 adding	 a	 novel	HTS	profile	 to	 the	 set	will	 increase	diversity	whereas	 adding	 a	 profile	
already	contained	 in	 the	set	will	decrease	 it.	The	maximum	diversity	(100%)	 is	reached	when	an	
equal	 number	 of	 compounds	 represent	 each	 distinct	 assay	 profile	 in	 the	 respective	 hit	 set.	 (21)	
Effectively,	this	procedure	provides	a	ranking	of	compounds	by	their	contribution	to	the	diversity	of	
the	entire	set.	Monitoring	the	HTS	performance	diversity	provides	a	measure	for	the	diversity	of	the	
top	 N	 diverse	 compounds,	 where	 N	 ranges	 from	 1	 to	 the	 size	 of	 the	 respective	 test	 collection.	
Because	 the	 first	 compound	was	selected	randomly,	 the	entire	selection	was	repeated	500	 times,	
each	time	with	a	different	starting	point	(resulting	 in	500	distinct	ranked	 lists).	The	average	HTS	
performance	diversity	over	these	500	rankings	(+/‐	standard	deviation,	sd)	is	plotted	for	the	top	N	
compounds.	The	vertical	line	indicates	the	set	size	that	achieved	the	maximum	diversity	across	all	
of	the	selection	methods.	This	set	size	was	used	for	to	generate	the	bar	charts	in	Fig.	4b	and	4c	in	
the	manuscript	as	well	as	Fig.	S3.	

(a)	The	diversity	curves	show	that	selection	using	MC	profile	diversity	led	to	higher	HTS	outcome	
diversity	than	random	selection	and	selection	based	on	chemical	structure	diversity.	Each	selection	
method	(MC,	CS,	RND)	picked	distinct	profiles	at	first,	leading	to	a	steep	increase	in	diversity	near	
the	 top	of	 the	 list.	However,	after	many	selections,	 random	selection	will	 choose	profiles	 that	are	
already	 in	 the	 set,	 indicated	 by	 a	 flattening	 of	 the	 diversity	 curve.	 Since	 there	 is	 no	 differential	
selection	possible	for	the	full	set,	all	curves	converge	when	the	diversity	of	the	full	compound	set	is	
reached	(23.9%;	right	end	of	the	plot).	However,	selection	based	on	the	MC	diversity	rankings	leads	
to	a	prolonged	 increase	 in	HTS	outcome	diversity	and	hence	 reaches	a	higher	 level	 than	 random	
compound	 selection.	 This	 result	 indicates	 that	MC	 profile	 diversity	 can	 inform	 the	 selection	 of	 a	
performance‐diverse	 compound	 set	 for	 cell‐based	 screens.	 Selection	 on	 chemical	 structure	
diversity	 performed	 worse	 than	 MC	 and	 even	 led	 to	 lower	 performance	 diversity	 than	 random	
selection.	(b)	Similar	results	are	observed	for	the	GE	test	collection,	where	diversity	selection	based	
on	GE	profiles	outperforms	RND	and	CS,	leading	to	higher	HTS	performance	diversity.	Likely	due	to	
the	lower	numbers	of	compounds	in	the	GE	study,	GE‐profile‐based	selection	led	to	a	lower	increase	
over	random	than	MC.	



 
15 

	



 

Figure	S3

We	comp
performa
profiles,	
selected	s
patterns	
selected	f
and	 (b)	
diversity	
the	result
more	HT
selection	
over	 CS	 a
compoun

	

3.	Assay‐pro

pared	the	num
ance	across	H
GE	 profiles,	
sets	of	the	sa
using	 hierar
from	(a)	the
the	 GE	 test	
subsets	used
ts	shown	in	F
S	clusters	 th
of	diverse	G
and	 RND	 (b
nds	available	

ofile	cluster	

mber	of	disti
HTS	assays)	
or	 chemica
ame	size	(RN
rchical	 cluste
	MC	test	coll
collection	 (
d	here	were	
Fig.	4b,	4c,	a
han	sets	with
GE	profiles	 le
)	 than	 selec
for	the	GE	st

	

coverage	of

inct	HTS	ass
that	were	co
l	 structure	 (
ND).	We	clus
ering	 (see	M
lection	(139
(463	 compou
identical	to	t
nd	5c	of	the	
h	diverse	che
ed	to	compa
ction	 of	 dive
tudy.		

f	different	d

ay	profile	clu
overed	by	co
(CS).	 We	 com
stered	compo
Methods	 for	 d
9	compound
unds;	 marke
the	ones	used
manuscript,	
emical	struc
arably	smalle
rse	 MC	 prof

diversity	sel

usters	(group
mpound	set
mpared	 thes
ounds	based
details).	Dive
ds;	marked	w
ed	 with	 a	 d
d	in	Fig.	4	of	
sets	with	di

cture	or	rand
er	 improvem
files	 (a),	 like

	

ection	meth

ps	of	compo
s	selected	to
se	 to	 a	 base
d	on	similar	
erse	 compou
with	a	dashed
dashed	 line	
f the	manuscr
verse	MC	or	
domly	select
ments	of	HTS
ely	 due	 the	

hods.	

unds	with	si
o	have	divers
eline	 of	 rand
HTS	perform
und	 subsets	
d	line	in	Fig,
in	 Fig,	 S2b)
ript.	Analogo
GE	profiles	
ed	sets.	Like
S	cluster	cov
lower	 numb

16 

imilar	
se	MC	
domly	
mance	
were	
,	S2a)	
.	 The	
ous	to	
cover	
ewise,	
erage	
ber	 of	



17 
 

Figure	S4.	Annotated	bioactive	compounds	clustered	based	on	GE	profiles	form	groups	with	
similar	biological	effects.	

We	 hierarchically	 clustered	 all	 compounds	 of	 the	 GE	 hit	 set	 for	 which	 a	 common	 name	 was	
available	based	on	their	gene‐expression	profiles.	We	used	complete	linkage	applied	to	correlation	
distance	 (1‐Pearson	 coefficient).	 Compounds	 that	 do	 not	 have	 a	 neighbor	 closer	 than	 0.35	
correlation	distance	are	omitted	for	clarity.	Compound	names	are	reported	next	to	the	dendrogram.	
Where	known,	the	compound’s	primary	biological	effect	or	use	is	reported.	If	groups	of	compounds	
with	related	biological	effects	co‐cluster	their	common	effect	is	summarized	(indicated	by	a	larger	
font	 size).	 Compounds	 that	 are	 present	multiple	 times	 are	 positive	 controls	 included	 in	multiple	
instances	throughout	the	experiment.	
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Table	S1.	Composition	of	profiling	compound	collection	and	hit	sets.	

	 BIO	 	 DOS	 	 POS	 	 all	

	 N	 hits	 hit	rate	 	 n	 hits	 hit	rate	 	 n	 hits	 hit	rate	 	 n	 hits	 hit	rate	

MC	 12431	 8490	 68.3	 	 17805 6594	 37.0	 	 ‐	 ‐	 ‐	 	 30236	 15084 49.9	

GE	 4199	 1639	 39.0	 	 17553 1924	 11.0	 	 29	 28	 96.6	 	 21781	 3591	 16.5	

union	 12606	 9009	 71.5	 	 19164 7606	 39.7	 	 ‐	 ‐	 ‐	 	 31770	 16615 52.3	

	

	

Table	S2.	Detection	method	used	in	assay	measurements.	

detection	method	 frequency	 frequency	[%]
fluorescence	 290	 56.64%
luminescence	 150	 29.30%
cytoblot	 28	 5.47%
absorbtion	 4	 0.78%
qPCR	 2	 0.39%
alphaLISA	 1	 0.20%
other	 37	 7.23%
	

	

Table	S3.	Assay	kits	used	in	assay	measurements.	

assay	kit	 frequency	 frequency	[%]
CellTiter‐Glo	 100	 19.53%
Resazurin	 85	 16.60%
Calcein	 44	 8.59%
JC‐1	 33	 6.45%
Reporter	 29	 5.66%
Bromodeoxyuridine	 20	 3.91%
NileRed	 9	 1.76%
AmplexRed	 7	 1.37%
DAPI	 6	 1.17%
Caspase‐Glo	 6	 1.17%
OilRedO	 5	 0.98%
MTT	 4	 0.78%
other	 164	 32.03%
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Table	S4.	Cells	used	in	assay	measurements.	

cell	type	 frequency	 frequency	[%]
primary	 142	 27.73%
A549	 67	 13.09%
HEK293	 15	 2.93%
NIH/3T3	 14	 2.73%
U2OS	 14	 2.73%
HeLa	 14	 2.73%
H1299	 13	 2.54%
PC9	 13	 2.54%
LN229	 13	 2.54%
hES	 12	 2.34%
MEF	 7	 1.37%
Alpha‐TC‐1;Beta‐TC‐3	 6	 1.17%
mES	 5	 0.98%
C2C12	 5	 0.98%
HTB‐65	 4	 0.78%
786‐O	 4	 0.78%
HUVEC	 4	 0.78%
A498	 4	 0.78%
MCH58	 4	 0.78%
HepG2	 4	 0.78%
worm	 3	 0.59%
DLD1	 3	 0.59%
MM1S	 3	 0.59%
RKO	 3	 0.59%
HT22	 3	 0.59%
RPMI8826	 3	 0.59%
Huh7	 3	 0.59%
SK‐MEL‐5	 3	 0.59%
HMLE	 3	 0.59%
MEF‐1	 2	 0.39%
INS‐1E	 2	 0.39%
J774A.1	 2	 0.39%
mPASMC	 2	 0.39%
U251	 2	 0.39%
BHK	 2	 0.39%
KoptK1	 2	 0.39%
Min6	 2	 0.39%
L6	 2	 0.39%
PC12	 2	 0.39%
H4	 1	 0.20%
D54	 1	 0.20%
BHK‐21	 1	 0.20%
CEM21;HeLa	 1	 0.20%
BJ	 1	 0.20%
CRL‐5865	 1	 0.20%
DKS8	 1	 0.20%
BG1	 1	 0.20%
LNCaP	 1	 0.20%
COS‐7	 1	 0.20%
CCL‐185	 1	 0.20%
BJAB	 1	 0.20%
Hct116	 1	 0.20%
HKE3	 1	 0.20%
other	 87	 16.99%
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Table	S5.	MC	and	GE	have	significantly	overlapping	yet	distinct	hit	sets.	

Numbers	represent	compounds	tested	in	both	experiments.	The	null	hypothesis	of	MC	and	GE	hit	
sets	being	independent	can	be	rejected	for	the	set	of	all	compounds	and	the	DOS	collection	based	on	
p‐values	calculated	with	Fisher’s	exact	test.	The	BIO	set	does	not	show	significant	overlap	because	
both	MC	and	GE	identify	many	of	the	4053	compound	as	hits.	Therefore,	a	large	overlap	is	expected.	

	 n	 hits	MC	 hits	GE	 overlap	 p‐value	

BIO	 4053	 3018	 1557	 1148	 0.81	
DOS	 16194	 6026	 1837	 912	 1.13E‐31	
all	 20247	 9044	 3394	 2060	 3.70E‐94	
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Table	S6.	Compounds	active	in	both	MC	and	GE	assays	are	often	promiscuous	

Shown	 are	 compounds	 active	 in	 both	 MC	 and	 GE	 with	 a	 promiscuity	 probability	 >	 0.5	 (see	
“Promiscuity	probability”	and	Dančík	et	al.	(20))	for	which	common	names	were	available.	
	
compound_name	 PubChem_CID
3'‐fluorobenzylspiperone	 3248000
5‐iodotubercidin	 1830
5‐nitroso‐8‐cinnolinol	 44483284
AMA‐2	 160020
BADGE	 2286
CD‐437	 135411
dihydroergocristine	 11072143
FCCP	 3330
GR	55562	 128018
H7	 3542
L‐741,742	 133008
LE‐135	 10410894
LY‐294002	 3973
MCG‐D0103	 9865515
NSC95397	 262093
PXD101	 6918638
R(+)‐6‐bromo‐APB	 10452020
R(‐)‐2,10,11‐trihydroxy‐N‐propyl‐noraporphine 6603798
RO	31‐8220	 5083
SB‐415286	 4210951
SCH‐79797	 4259181
ZL3VS	 5497183
aminoacridine	 7019
aminopurvalanol	A	 6604931
apomorphine	hydrochloride	 6005
bepridil	 2351
beta‐peltatin	 92122
calcimycin	 40486
cantharidin	 2545
cicloheximide	 6197
colchicine	 6167
cucurbitacin	I	 44483311
curcumin	 969516
daunorubicin	 30323
emetine	 10219
etoposide	 36462
fenbendazole	 3334
hinokitiol	 3611
hycanthone	methanesulfonate	 3634
mefloquine	 4046
metergoline	 28693
methiazole	 6604471
mycophenolic	acid	 446541
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niclosamide	 4477
nocodazole	 4122
ouabain	 439501
parbendazole	 26596
phorbol	myristate	acetate	 27924
pimozide	 16362
puromycin	 2724365
sanguinarium	chloride	 5154
suloctidil	 657255
tacedinaline	 2746
tetrandrine	 73078
thapsigargin	 446378
trifluoperazine	 5566
trifluridine	 6708818
tyrphostin	A9	 5614
tyrphostin	AG	1296	 2049
tyrphostin	AG‐1478	 2051
tyrphostin	AG879	 6809654
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Supporting	Datasets	
	
Dataset	S1.	Listing	of	assays	and	assay	measurements	published	in	ChemBank.	
ChemBank	experiment	IDs	and	links	are	listed	for	each	assay	(provided	as	a	separate	Excel	file).	
	
Dataset	S2.	Listing	of	assay	measurements	published	in	PubChem	and	BARD.	
PubChem	 Assay	 IDs	 (AIDs)	 and	 BARD	 Assay	 Definition	 IDs	 (ADIDs)	 are	 listed	 for	 each	 assay	
(provided	as	a	separate	Excel	file).	
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