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ABSTRACT

The roundworm Caenorhabditis elegans is an effective model

system for biological processes such as immunity, behavior,

and metabolism. Robotic sample preparation together with

automated microscopy and image analysis has recently en-

abled high-throughput screening experiments using C. ele-
gans. So far, such experiments have been limited to per-image

measurements due to the tendency of the worms to cluster,

which prevents extracting features from individual animals.

We present a novel approach for the extraction of indi-

vidual C. elegans from clusters of worms in high-throughput

microscopy images. The key ideas are the construction of a

low-dimensional shape-descriptor space and the definition of

a probability measure on it. Promising segmentation results

are shown.

Index Terms— Caenorhabditis elegans, image segmen-

tation, active shape model, high-throughput screening

1. INTRODUCTION

Using automated sample preparation and microscopy, high-

throughput screens (HTS) in Caenorhabditis elegans are now

being used to test tens of thousands of chemical or genetic

perturbations to identify promising drug compounds and reg-

ulators of disease [1, 2, 3]. Unfortunately, except for very sim-

ple assay readouts, image analysis algorithms have not been

available to automatically analyze HTS samples. Instead, re-

searchers must typically inspect each of the hundreds of thou-

sands of microscopy images collected for a screen, a tedious,

non-quantitative, subjective, and error-prone process.

The main challenge in analyzing images from high-

throughput C. elegans experiments is that the density of

worms in each well of the microplates used for such exper-

iments causes the worms to touch or cross over each other.

While the outcome of some simple assays can be determined

by measuring a property of the foreground in the overall im-

age (e.g., overall fluorescently-stained area in the image [4]),
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most assays require identifying and measuring a property

of each individual worm in the population, most commonly

each worm’s shape or fluorescent pattern. Image analysis

algorithms for tracking one or a few worms over time were

developed [5, 6]. However, these methods exploit motion

cues to disambiguate touching worms and cannot be used

in still images of high-throughput screens. Other advanced

methods based on high-resolution analysis and time-resolved

3-D worm images [7, 8] are also not suitable for the compar-

atively low spatial resolution of HTS experiments.

Meticulous analysis of C. elegans images reveals that

while the edges of overlapping worms are not sufficient to

separate them, the morphological deformations between the

worms’ appearances are nearly isometric. This implies that

the variability between the worms’ appearances can be cap-

tured via a low-dimensional feature space, much in the spirit

of the commonly used active shape model (ASM) [9, 10].

Just as Leventon et al. [11], we assume that these features

are normally distributed, and we validated the assumption

experimentally for a comprehensive set of training worms

(data not shown). We can therefore define the concept of a

probable worm shape and use it to partition a given worm

cluster such that the sum of the posterior worm probabilities

of the resulting segments is maximized. We demonstrate our

method for several HTS samples.

2. THE WORM MODEL

The suggested method consists of two phases. In the train-

ing phase a comprehensive set of training worms are used to

learn the feature space of the worms’ deformations and the

probability distribution defined on it. In the test phase we use

outcomes of the learning phase to resolve worm clusters. This

section presents the learning methodology applied on N train-

ing worms obtained by an initial segmentation of the images.

The next section deals with partitioning the clusters formed

by the remaining worms.

We first represent the shape deformations of the worms by

using the medial-axis transform [12], which returns the skele-

ton of the shape and its distances to the boundaries. Simi-
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Fig. 1. Creating a worm descriptor. A: Input image (rotated).

B: Result from initial segmentation. C: Skeleton. D: Pruned

skeleton with control points shown as disks with the local ra-

dius. E: Shape recreated from descriptor.

larly to the ASM, the vector representations of the parameter-

ized skeletons are projected into a lower-dimensional feature

space. The compact representation is used for reconstruction

and retrieval [10]. Fig. 1 exemplifies the process of skele-

ton extraction and reconstruction of an individual worm. The

skeleton of each worm (Fig. 1A) is extracted (Fig. 1C), and

spurs are pruned off by iteratively removing the shortest spur

of every branch point of the skeleton. Once a non-branched

skeleton is obtained (Fig. 1D), end points are extracted, and n
control points are uniformly sampled along the skeleton. The

local radii of the worm are also extracted and saved for each

of the control points. Thus, the original worm shape can be

approximately restored by placing disks with the local radius

at each control point, and then smoothing the edges by taking

the pair-wise convex hull of the disks (Fig. 1E).

We use similarity transformation (i.e., rotation and trans-

lation) to align the skeletons of the worms to the y-axis min-

imizing the squared sum of the Euclidean distances of cor-

responding points along the skeletons [9]. Fig. 2A shows

the aligned skeletons of the training set. All images are also

mirrored around the y-axis to obtain a symmetric descriptor.

Note that the alignment is rigid (no scaling or skew), so that

the non-rigid components of the deformations are captured

within the shape descriptors. In the absence of prior scal-

ing, for example, segments that are significantly smaller then

the average worm have lower probability of being classified

as worms. We define the mean worm as the average of the

aligned control points and their corresponding distances from

the background.

Fig. 2B shows the radii of the training worms along their

skeletons. The regularity of the worms’ radius profiles al-

lows us to represent the radii by a single value; the median

thickness of the worm. The deformations of the postures of

the worms are therefore described by the coordinates of the n
aligned control points and the median thickness of the worm,

resulting in a (2n+1)-dimensional data space.

We use principal component analysis [13] to project the

descriptor of the training worms into a lower-dimensional fea-
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Fig. 2. The training set. A: Connected control points of

N worms (and their shape mirrored around the y-axis) after

alignment by translation and rotation. B: Variation in radius

along the length of all N worms.

ture space. Let D define the covariance matrix of the descrip-

tors of the training worms. Then,

Dbk = λkbk, (1)

where bk and λk are the k-th eigenvector and eigenvalue of D,

respectively. We were able to restore with good approxima-

tion each worm x in the training set using linear combinations

of L of the 2N +1 eigenvectors:

x = x̄+BLw, (2)

where x̄ is the averaged worm descriptor, w is a vector of

weights, and BL is a matrix of the eigenvectors {b1 . . .bL}
corresponding to the L larges eigenvalues. Fig. 3 shows five

“eigenworms”, each built from an eigenvector multiplied by

increasing weights.

We observed that the weights of the training worms are

normally distributed. Constructing the feature space of the

worms’ deformations, we can now define a probability mea-

sure on that space:

p(x) ∝ exp(−wT Σ−1
L w), (3)

where ΣL = diag(λ1 . . .λL). This is the key principle used to

resolve clustered objects in the next section.

3. RESOLVING WORM CLUSTERS

Once the shape deformation model is defined, we apply it to

resolve the clusters of worms that remain after initial image

segmentation (described in Sec. 4). Because the worms in

our screens vary only slightly in body area, we can readily

identify clusters as objects larger than 1.5 times the mean size

of the worms in the training set. Unusually small objects,

such as debris and over-segmented worms, are excluded from

the analysis.

Let S denote the skeleton of a cluster of worms pruned so

that only branches longer than the average radius of a worm
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Fig. 3. The effect of varying the weights of five of the largest

“eigenworms” of the worm model.

remain. S is separated in to segments by cutting the skeleton

at every branch point. The skeleton S can now be represented

by a sparse undirect graph where each skeleton segment cor-

responds to a vertex v, and each branch point corresponds to

an edge e. Thus, the full cluster skeleton S can be represented

by the set of vertices {v} and the set of edges {e}.
Next, we want to resolve the cluster by finding the set of

paths ρ through the cluster that has the highest probability of

representing a set of worms. A path ρ on S is a set of ver-

tices {v1 . . .vm} connected by a set of edges edges {e1 . . .en},
where m ≥ 1, n ≥ 0. Note that the number of possible paths

in S grows exponentially with the number of edges, or branch

points. We first estimate the number of worms in a cluster by

dividing the cluster area by the area of the mean worm. We

use a greedy algorithm to search for a cluster partition that

maximizes the sum of the probabilities of the segments. For-

mally, let K be the estimated number of worms in a cluster

and let ρk be a path in S that represents a worm. We look for

a partition {ρ1 . . .ρK} of S such that the cost

E(ρ1 . . .ρK) =−
K

∑
k=1

log p(ρk), (4)

of the partition is minimized. The probability p of a path ρ
is given by Eq. 3, where the weights w are obtained when

describing the path ρ with the worm model, using Eq. 2.

Fig. 4 shows an example of a cluster with two intersect-

ing worms. We calculate the probability p of each path in

the graph. The five most probable sub-skeletons of Fig. 4B

are shown in Fig. 4D–H. We select the most probable path to

represent a worm in the cluster. When the path contains inter-

sections, we remove the largest vertex; otherwise, we remove

it entirely. We continue the process until the remaining ver-

tices are smaller than the smallest worm in the training set.

4. EXPERIMENT

4.1. Image data

The worm preparation and image acquisition are detailed in

Moy et al. [4]. In brief, C. elegans is infected by the bac-
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Fig. 4. A simple cluster and its separation. A: input image.

B: binary image after foreground/background segmentation

of A. C: skeleton of B partitioned into four vertices (v) and

one edge (e). D–H: The 5 most probable skeletons, with cor-

responding probabilities. I: final segmentation result.

terial pathogen Enterococcus faecalis, washed, transferred to

384-well plates containing liquid media with the compound to

be tested, incubated until the infection kills untreated worms,

washed, and imaged by a Discovery-1 automated microscope

(Molecular Devices) with a 2× magnification lens.

4.2. Initial image segmentation and model building

To build the training set, we segment worms from the im-

age background by local adaptive thresholding [14] and mor-

phological opening, after reducing illumination variation by

subtracting a B-spline surface approximating the image back-

ground [15]. Worms are further separated from each other

based on gray-scale information by watershed segmentation

[16] followed by extensive merging [17].

From the objects identified by this automated method, we

manually selected N = 454 correctly segmented worms from

a total of 56 images of wells containing approximately 15

worms each. The worms had varying shapes, and approxi-

mately 25 % of the worms had a straight rod shape, charac-

teristic of dead worms. We cropped the selected worms and

the corresponding binary masks from the input images, and a

model worm was created using eight eignevectors (L=8) re-

sponsible for 99% of the model variation as described above.

4.3. Cluster partition

We applied the proposed segmentation approach to images

containing worm clusters that could not be resolved based on

gray-scale information alone. Most of the worms were cor-
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Fig. 5. Four wells from a viability assay with segmentation

shown as outlines. The first worm of every cluster, as well as

single worms, are outlined in red.

rectly segmented as compared to visual evaluation (Fig. 5).

Note that the 4-cluster in Fig. 5A, the 5-cluster in Fig. 5B, the

several 2-clusters in Fig. 5C, and the 6-cluster in Fig. 5D were

partitioned correctly.

5. CONCLUSION AND FUTURE WORK

We have shown that incorporating shape information allows

clusters of C. elegans to be resolved. Once worm clusters

can be reliably resolved, the live–dead assay can be automat-

ically scored using simple shape descriptors. For classifica-

tion of more complex phenotypes, machine learning may be

used to derive a combination of texture, shape, and color fea-

tures. Overall, the algorithms described here show promise as

the basis of an open-source toolbox for the robust, automated

scoring of a wide range of C. elegans assays.

We are currently exploring more advanced skeletoniza-

tion algorithms and extending our shape model to handle self-

intersections and other challenging topologies. Finally, we

will apply the methods to several large screening experiments.
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