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Abstract. We present a novel approach for extracting cluttered objects based on
their morphological properties1. Specifically, we address the problem of untan-
gling C. elegans clusters in high-throughput screening experiments. We represent
the skeleton of each worm cluster by a sparse directed graph whose vertices and
edges correspond to worm segments and their adjacencies, respectively. We then
search for paths in the graph that are most likely to represent worms while mini-
mizing overlaps. The worm likelihood measure is defined on a low-dimensional
feature space that captures different worm poses, obtained from a training set of
isolated worms. We test the algorithm on 236 microscopy images, each contain-
ing 15 C. elegans worms, and demonstrate successful cluster untangling and high
worm detection ratio.

1 Introduction

Recent progress in robotic sample preparation combined with automated microscopy
and image analysis allows high-throughput screening experiments for testing biological
processes such as immunity, behavior, and metabolism. For example, high-throughput
screening of the roundworm Caenorhabditis elegans is used to test tens of thousands
of chemical or genetic perturbations to identify promising drug compounds and regu-
lators of disease [1–3]. Automatic processing of the vast amount of data obtained from
a screen is therefore necessary. Existing methods compute image-based statistics, e.g.,
fluorescently-stained area in the image with respect to the area covered by worms [4].
Many scientific questions however require measurements on individual worms, such
as shape and localization of reporter signals. But worms in these images often overlap
and cluster into clumps, making analysis based on individual worms challenging. Solu-
tions have been proposed for the analysis of individual worms in low throughput video
sequences where the worms are disambiguated by tracking them over time [5–7]. Meth-
ods for resolving high resolution 3D images of worms have also been demonstrated [8,
9]. These approaches are not suitable for the comparatively low-resolution, 2D images
produced in high-throughput experiments. Extracting overlapped worms in images has

1 Accepted to the International Conference on Medical Image Computing and Computer As-
sisted Intervention (MICCAI) 2010



been recently demonstrated by thresholding the curvature of skeleton segments of a
worm cluster [10]. Yet, this method is limited to relatively small variations of worm
poses and configurations.

While isolated worms can be extracted easily based on the differences of image
intensities, the image data alone is not sufficient to delineate clustered worms. More-
over, edges and intensity variations within the worms often mislead conventional seg-
mentation algorithms. Nevertheless, while the different poses of the worms introduce
significant extrinsic geometrical differences, all worms share similar intrinsic geomet-
rical properties such as length and thickness profile. The shape characteristics should
therefore play a key role in a segmentation algorithm.

There exist a few algorithms that incorporate shape priors into the segmentation
process for extracting multiple, possibly overlapping, objects, (e.g., see [11]). These
shape-based algorithms however assume that the expected number of objects to segment
is known. Practically, due to computational constraints only a few partially occluded
objects can be segmented simultaneously.

We present a conceptually novel algorithm for untangling clusters of worms that is
based exclusively on their poses. Our formulation leads to a computationally efficient
morphology-guided graph search that relies on a probabilistic model of the worm poses,
learned from training data. Representing the skeleton of a worm cluster by a graph
whose vertices represent worm segments, we search over paths in the graph that are
more likely to represent complete individual worms while minimizing overlaps. We
formulate the problem as a minimization of a cost functional. To reduce computational
complexity, we use a greedy search strategy and show its correspondence to the optimal
exhaustive search.

The elongated, thin structure of the worms, together with the similarity in their
thickness profiles, motivate the use of their medial axis transform (skeleton) as their
shape descriptor [12–14]. Since the shape deformations of the worms are nearly isomet-
ric (no stretching, shrinkage, etc.), the worms variability in appearance can be captured
by a low dimensional feature space. We apply principal component analysis (PCA) to
a comprehensive set of worm shapes from the training set. Only a limited number of
eigen vectors are needed to reliably represent the entire population. We use the shape
space to define a probability distribution that guides the detection of the most probable
worm descriptors within the graph search.

While the PCA-based representation of the worms shape has been demonstrated
before [15], the contributions of this paper include the unique graph representation, the
graph search algorithm and the greedy approximation. To the best of our knowledge, we
demonstrate the first robust, automatic method for identifying a large number of objects
(worms) in cluttered clusters.

We test the algorithm on 236 microscopy images, each containing a well with 15 C.
elegans worms, and demonstrate successful cluster untangling and high worm detection
ratio. The quality of the results obtained with a relatively low computational complexity
shows the promise of our method to remove the computational bottleneck in large-scale
biological experiments.



2 Probabilistic shape model

In this section, we briefly review the shape representation we use in our algorithm. The
details are described elsewhere [15]. A worm descriptor consists of n equally spaced
control points c ∈ R2 along the worm skeleton and the average worm thickness, ob-
tained by using the medial axis transform [12, 13]. This (2n + 1) dimensional vector
is used for reconstruction and retrieval. The worm descriptors are aligned by similarity
transformation (translation and rotation) based on their first and second moments.

We use PCA to project the descriptors of the worms in the training set onto a
low-dimensional feature space. PCA model implies a probability measure on the space
spanned by the most significant eigen vectors:

P (x) ∝ exp(−wMΣ−1
M w), (1)

where ΣM = diag(λ1 . . . λM ) are the highest eigenvalues and w = {w1, . . . , wM}
are the weights obtained by projecting the worm descriptor, x, to the space spanned by
the M most significant eigen vectors. The dimensionality M is set such that the selected
eigenvalues explain 99% of the variance.

(a) (b) (c) (d) (e)

Fig. 1. Graph representation of a worm cluster. (a) Original image. (b) Cluster skeleton. Inter-
section points are marked in red. (c) Graph representation Gs of the skeleton shown in b. Each
segment becomes a node and each intersection becomes a clique in the graph. (d) A simple path
in Gs and (e) the corresponding skeleton segments. The skeleton segments form a branch which
is unlikely to represent a worm skeleton.

3 Graph representation and search algorithm

We now focus on the main contribution of the paper, performing cluster untangling
using morphology-guided graph search. We assume that the worm clusters are already
segmented from the background and a worm likelihood measure P (x) is defined based
on the training set, according to Eq. (1).

3.1 Graph representation of the worm cluster skeleton

Let Gs = {V,E} denote a sparse, directed graph that represents the skeleton S of a
worm cluster, where V = {vi} and E = {ei,j} denote the graph vertices and edges,



respectively. We denote the number of vertices by V = |V |. Figure 1b shows the skele-
ton of the worm cluster in Figure 1a together with the intersection points marked in red.
The cluster intersection points partition the skeleton into segments that are represented
by the graph vertices, as demonstrated in Figure 1c. The length of a skeleton segment
is determined by the number of pixels it contains. An edge ei,j connects two vertices
{vi, vj} if their corresponding segments share a common intersection point. To avoid
path duplication we set an order on the graph nodes, making the graph directed, i.e.
ei,j = 1 and ej,i = 0 if i < j. A simple path in the graph is a chain of connected ver-
tices without cycles. Note, however, that not every simple path in the graph represents
a probable worm skeleton. A path in the graph that includes, for example, a 3-clique
represents 3 worm segments with common intersection point. These segments form a
branch rather than an open curve and therefore are not likely to represent a worm skele-
ton. See Figure 1d,e for an example of a path that forms a branch.

We construct an V × V adjacency matrix, Gs, that defines the graph that represents
the worm cluster skeleton. Neighborhoods of vertices are determined by detecting the
intersections associated with each skeleton segment.

We use the breadth first search (BFS) algorithm to detect the paths in Gs. Let L
denote the maximal length of a path, (i.e. its total number of vertices minus one). We
construct length-l paths, where l = 0 . . . L, by visiting the end vertices of each of the
existing length-(l −1) paths and attaching the neighboring vertices. That is, if the last
node of a length-(l −1) path has two neighbors, then two additional length-l paths are
detected.

A general graph search of this form (as in the traveling salesman problem) has a
combinatorial complexity O(V!) when L = V. Yet, the nature of the problem reduces
its complexity significantly. Since branches (cliques of more than two vertices) are ex-
cluded, the maximal length of the likely paths L, corresponds to the number of intersec-
tion points. Let D denote the maximal size of the clique associated with an intersection
point in the graph (i.e., the number of segments attached to it). Then the number of
likely paths in the graph is in the order of O(L2D2). Practically, since worms have
bounded length, we limit the length of the paths even further such that the lengths in
pixels of the corresponding skeleton segments do not exceed the length of the longest
worm seen during the training.

In the example shown in Figure 1 there are 3 intersection points and therefore L = 3.
For all intersection points in this example D = 3. In this particular graph the probable
paths include: 7 length-0 paths, 9 length-1 paths, 6 length-2 paths and 4 length-3 paths.

3.2 Search for the most probable paths in the graph

We obtain the approximated number of worms in a given cluster, denoted here by K,
from the ratio between the worm cluster area and the median area of the training worms.
Let ρk denote a path in Gs that represents the skeleton of the k-th worm. We can now
formalize the cluster untangling problem as a search for K paths is Gs that minimize
the cost functional:

E(ρ1 . . . ρk) = −
K∑

k=1

log P (ρk) + α

K∑

k=2

k−1∑

l=1

|ρk ∩ ρl|+ β|Ṽk|, (2)



where Ṽk = {v|v ∈ Gs, v /∈ [ρ1 ∪ ρ2 . . . ∪ ρk]}. Let us now take a closer look at this
functional. The first term (the likelihood cost) encourages the selection of paths that
are most likely to represent complete, individual worms. The second term (the overlap
cost) encourages minimization of the overlaps between the selected paths:

|ρk ∩ ρl| = {v|v ∈ ρk and v ∈ ρl}. (3)

The third term (the leftover cost) is the number of vertices |v| in Gs that are not included
in the union of the selected paths {ρk}. It encourages the ‘coverage’ of the worm cluster
skeleton S. The scalars weights α and β balance the terms in the functional. In all of our
experiments we set α and β to 2. The global minimum of this optimization problem can
be obtained by an exhaustive search for all subsets of K out of P (all) paths in Gs. This
is, however, a combinatorial problem of order

(P
K

)
. To reduce the computational time

we apply a greedy strategy, where at each stage we make a locally optimized choice of a
path in the graph, until we select K paths. Given {ρ1 . . . ρk−1} selected in the previous
iterations of the search, the greedy algorithm seeks a path ρk that minimizes

E(ρk|ρ1 . . . ρk−1) = − log P (ρk) + α

k−1∑

l=1

|ρk ∩ ρl|. (4)

We can represent the cost of the first selected path ρ1 by reducing Eq. (4):

E(ρ1) = − log P (ρ1) (5)

Once we complete K−1 iterations, we also test if K is the optimal number of paths
to represent the cluster. We compare the incremental cost of having only K − 1 paths,
i.e.,

E(ρK = ∅|ρ1 . . . ρK−1) = β|ṼK−1|, (6)

with the cost of having the additional path ρk:

E(ρK |ρ1 . . . ρK−1)=− log P (ρK) + α

K−1∑

l=1

|ρK ∩ ρl|+ β|ṼK |. (7)

In other words, we extract K rather than K − 1 paths from a cluster only if the cost
of including an additional path is lower than the cost of having a path in Gs that is not
assigned to a worm. Indeed, a cluster may contain many small fragments, that will in-
crease the penalty term in Eq. (6), yet the very low probability of any of these fragments
to represent a valid worm together with the cost introduced by the rest of the fragments,
will eventually lead to selecting a solution with K − 1 worms. Alternatively, the left-
over fragments can be part of a highly overlapped path that represents a worm with
high probability. A comparison between the costs allows us to make the most plausible
decision.

The greedy strategy corresponds to the exhaustive search since the K−1 cost func-
tionals of ρ1, . . . , ρk−1 in the form of Eq. (4) and the cost functional in Eq.(7) sum up
to the cost functional in Eq. (2) for selecting K paths in Gs. Replacing Eq. (7) with
Eq. (6) we obtain the cost functional Eq. (2) for K − 1 paths.



3.3 Morphology-guided graph search algorithm

The proposed algorithm can be summarized as follows:

– Initialize
• Calculate K.
• Use the breadth first search algorithm to detect P paths in Gs as described in

Section 3.1. This is the path candidates set.
• Define an empty set of selected paths.
• Calculate the likelihood cost E(ρ) = − log P (ρ) of each path.

– For k = 1 to (K − 1):
• Move the path with the lowest cost ρk to the selected paths set.
• For each path ρl in the path-candidates set compute the overlap cost (Eq. (3))

due to its intersection with the path ρk.
– Determine the total number of selected paths

• Update the costs of the remaining paths in the worm-candidates set by adding
the leftover cost, (Eq. 7). Let CK denote the lowest cost. This is the cost for
adding the kth path to the selected paths set.

• Calculate the leftover cost for not selecting an additional path (Eq. (6)). Let
CK−1 denote this cost.

• If CK < CK−1 output {ρ1 . . . , ρK}, otherwise output {ρ1 . . . ρK−1}.

4 Experiments
We evaluate the algorithm on an image set from a viability screen of C. elegans that
were infected by a bacterial pathogen, washed, transferred to 384-well plates containing
liquid media with the compound to be tested and incubated until the infection killed
untreated worms. The worm plates where imaged within 3, 24, 48, 72, 96, 120 and 144
hours after treatment, by an automated microscope with a 2× magnification lens. The
worms were segmented from the background using thresholding [15]. The training set
contained 454 individual manually detected worms. Worm descriptors were generated
using 21 equally spaced control points along the worm skeletons, together with their
average thickness. The feature space of the worm descriptors was spanned by the 10
most significant eigen vectors.

We applied the proposed algorithm to 236 images containing 3479 worms for which
we had manual annotations by an expert. Figure 2 presents successful untangling ex-
amples of images with complex worm clusters. To quantify the performance of the al-
gorithm, we compare the number of worms detected by our algorithm with the manual
count. In addition, we classify the detected worms as dead or alive, based on a simple
classifier we trained on the training set used to construct the PCA space. We then com-
pare the number of worms classified as live to the manual live worm counts. Figure 3
shows histograms of the count differences between the automatic worm detection and
the manual worm count for each of the 236 images. Due to uneven illumination, worms
near the well edges are not always detected by the preliminary segmentation. This leads
to an underestimated worm counts. Overestimated total worm counts are caused by
worm splitting or misclassifying worm debris as worms. In summary, 9% of the worms
were not detected while the false detection percentage was 0.23%. Note, that underes-
timated total worm counts imply ignoring part of the data while overestimated counts
(very few here) may introduce larger bias to the classification results.



Fig. 2. Examples images (odd rows) with their clusters resolved by the algorithm (even rows).

5 Conclusions

This paper addresses a particulary challenging problem of extracting clustered objects.
The objects are entangled and their poses vary, thus hierarchical models [16] or dis-
criminative boosting algorithms [17] that have been proposed for image parcellation
into multiple (brain) structures, are not applicable.

By exploiting the specific characteristics of our data we developed a novel detec-
tion method based on concepts from machine learning and graph theory. Representing
clustered worm segments as graph vertices, we search for paths in the graph that are
more likely to represent complete, individual worms. The thin, elongated structure of
the worms motivates the use of their skeletons as shape descriptors and implies a re-
duction in the computation complexity of the graph search. Yet, we believe that our
morphology-guided graph search can be generalized to detect cluttered objects with
different shapes with a suitable choice of descriptors.



Total Live

Fig. 3. Histograms of
the differences in count
between the automatic
worm detection and the
manual worm count for
each of the 236 images,
containing 3479 worms.
Left: Total worm count
differences. Right:
Live worms count
differences.
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11. Cremers, D., Sochen, N., Schnörr, C.: A multiphase dynamic labeling model for varia-
tional recognition-driven image segmentation. International Journal of Computer Vision
66(1) (2006) 67–81

12. Blum, H.: A transformation for extracting new descriptors of shape. Models for the percep-
tion of speech and visual form (1967) 362–380

13. Goutsias, J., Shonfeld, D.: Morphological representation of discrete and binary images. IEEE
Transactions on Signal Processing 39(6) (1991) 1369–1379

14. Stephens, G.J., Kerner, J.B., Bialek, W., Ryu, W.S.: Dimensionality and dynamics in the
behavior of C. elegans. PLoS Comput Biol 4(4) (2008)
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