From images to knowledge in high throughput

Large-scale learning of cellular -
phenotypes from images '
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The phenotype of motile T47D cells

Features associated with cell motility: lamellipodia,
filopodia, polarized cell shape, F-actin nucleation

Slmple methOdS at filopodia, less clumping

Few assumptions
Little modeling

Lots of data ] ] ]
Unstimulated Stimulated by heregulin

Normal T47D cells
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Iterative machine learning

[Jones et al., PNAS, 2009]

Using gentle boosting [Friedman et al.

, 1998]

data exploration software

Built training set of ~300 cells
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Fetch 20

“Train Classifier

P (Cell NumberNieighbors PercentTouching > 57.870399, |0.65022492, 0.65022492), [0-6773669, -0.56773669
F (Cel > 0.032108199, [0.73954767, ~0.73954767], [-0.34105974, 0.34105974))
8176, [-0.2280075, 022800751, [0.99999994, -0.99999994)
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Captured by the
human-trained

Why cut out the human?

HRG

stimulation

Not captured

Labeling for automatic training set

Replicate 1 Replicate 2 Replicate 3

classifier @
Unstimulated Stimulated by heregulin
Tumor 45 % motile cells 55 % motile cells
growth
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Two ways to improve the classifier Random features
Accuracy
The kernel trick ‘ ‘ ,
((x). d(y)) = 2(x)'z(y)
k(x, Yy Inner product used,
Original data Kemi\ fL;ncti?)n &9 by SUM.
X
X? Random features ,
[Rahimi and Recht, NIPS, 2007] z(x) 'z(y)
Training set size mencions spaca (2 tow b
hundred dimensions)
spanned by random
Fourier bases
ESBROAD ,irrorm See [Banko & Brill, 2001] | ESBROAD ,(irrorm A




Linear discriminant on random features Automatic vs. hand training
7.6 million training cells, Y] . o T nsimlated SN\ T e
130 measurements A B o
Mapped into 250- g g
dimensional random 2 z
feature space g g
Trained Fisher’s linear
discriminant A
X Pro]ec’tlon on Tnear discriminant in random feature space Boosting score
B
b
source: Cooley & Lohnes ((1971) I
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Automated classifier as good as human-trained
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Soft labels for cells Fuzzy counts
P LR Unstimulated Each cell in a sample is assigned a
A muate probability of having the positive phenotype
< QO o o o <
g Compute the probability of the sample having
B 0 positive cells
1 positive cell
! 2 positive cells
Projec,tion linear discriminant in rghdom featur; space (.S-.positive cells
Cell with this sco@ell with this score: . . .
P(stimulated) = .B%stimulated) = .65 This pdf of counts can be turned into a pdf of proportions
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Scoring samples by fuzzy counts

Per-well accuracy is quite good

Mix the pdfs of proportions => empirical positive and negative 10
control distributions
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Summary
We can identify subtle, complex cellular | [\
H |

phenotypes without human training /

May enable screening for “invisible”
phenotypes, as well as large-scale
) profiling experiments

Avoid premature thresholding, classification,
and aggregation. Embrace populations,
uncertain values, and fuzzy scores.
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