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From images to knowledge in high throughput
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Image analysis

CellProfiler
cell image analysis software

Images Measurements
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Knowledge

Scoring

intensities,

shapes,

textures,

counts,

etc.

Screens
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Add thousands of 

chemicals or RNAi 

agents, each one in a 

different sample
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Thousands of samples

Hit
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Phenotype 

complexity

Part 1: large-

scale machine 

learning

Part 2: non-

parametric 

scoring
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Simple methods

Few assumptions

Little modeling

:

:

Lots of data

The phenotype of motile T47D cells
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Features associated with cell motility: lamellipodia, 
filopodia, polarized cell shape, F-actin nucleation 

at filopodia, less clumping
Normal T47D cells

Stimulated by heregulinUnstimulated
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No

[Jones et al., PNAS, 2009]

Iterative machine learning

Using gentle boosting [Friedman et al., 1998]

Built training set of ~300 cells
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Adam 

Fraser

Why cut out the human?
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HRG 
stimulation

Motility
Captured by the 
human-trained 

classifier
? Not captured

Metastasis
Tumor 
growth

Labeling for automatic training set
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Stimulated by heregulinUnstimulated

Replicate 1 Replicate 2 Replicate 3

45!% motile cells 55!% motile cells

Two ways to improve the classifier
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Accuracy

x

x

Training set size

See [Banko & Brill, 2001]

Random features

[Rahimi and Recht, NIPS, 2007]

Datapoints in a fairly low-

dimensional space (a few 

hundred dimensions) 

spanned by random 

Fourier bases

Random features
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Kernel function

The kernel trick

Inner product used, 

e.g., by SVM.Original data



Linear discriminant on random features
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7.6 million training cells, 
130 measurements

Mapped into 250-
dimensional random 

feature space

Trained Fisher"s linear 
discriminant

Automatic vs. hand training
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Automated classifier as good as human-trained
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Soft labels for cells
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Cell with this score:

P(stimulated) = .65

Cell with this score:

P(stimulated) = .35

Fuzzy counts
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Each cell in a sample is assigned a 

probability of having the positive phenotype

Compute the probability of the sample having

0 positive cells

1 positive cell

2 positive cells

…

6 positive cells

This pdf of counts can be turned into a pdf of proportions



Scoring samples by fuzzy counts
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Mix the pdfs of proportions => empirical positive and negative
     control distributions

Per-well accuracy is quite good
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Summary
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We can identify subtle, complex cellular 

phenotypes without human training

Avoid premature thresholding, classification, 

and aggregation.  Embrace populations, 

uncertain values, and fuzzy scores.
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May enable screening for “invisible” 

phenotypes, as well as large-scale 

profiling experiments


