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Introduction

Modern automated microscopes collect

digital images at an astonishing pace.

Automated image analysis can measure

biological phenotypes quantitatively and

reliably, and has therefore become a

powerful tool for probing a wide variety

of biological questions using microscopy.

In this tutorial, we acquaint biologists with

this important computational field and

introduce some basic principles of image

analysis, using typical strategies for two-

dimensional images of cultured cells in

high-throughput screens as the primary

example.

Why Use Automated Image
Analysis?

Microscopy is one of the foundational

tools of biology, and researchers have for

centuries relied on their own visual

systems to interpret what they see. Al-

though examining tens of thousands of

samples by eye is tedious, biologists are

often highly motivated to invest the effort

in order to discover samples of interest or

annotate large sets of chemically or

genetically perturbed samples. One im-

pressive example is a genome-wide RNA-

interference screen for dozens of pheno-

types, where extensive manual annotation

of more than 40,000 movies of early

embryogenesis in Caenorhabditis elegans un-

covered the detailed involvement of hun-

dreds of genes in development [1]. Anno-

tation of such complex and varied

phenotypes is beyond the capabilities of

current computer software.

Yet there are many cases where scoring

visual phenotypes with a computer is

highly attractive. The most obvious ad-

vantage of automated image analysis is

speed, especially now that automated

microscopes can capture images faster

than a human can examine them. This

enables experiments on an entirely differ-

ent scale than before; for example, an

automatically analyzed microscopy screen

of the human genome by RNA interfer-

ence (more than 300,000 images) recently

revealed many classes of mitosis-essential

genes in multiple phenotypic categories

[2]. As a second example, counting dozens

of DNA-damage-induced foci in each of

hundreds of cells in each of tens of

thousands of images would simply be

impossible by eye; yet automated image

analysis enabled such a screen to identify

regulators of DNA-damage responses

(Scott Floyd, Michael Pacold, Thouis R.

Jones, Anne E. Carpenter, and Michael

Yaffe, unpublished data).

Often the goal of automated image

analysis is simply to replicate a human’s

observations with less labor. There are

other substantial scientific benefits, how-

ever: automated image analysis can yield

objective and quantitative measurements,

thereby enabling the capture of subtle

differences among samples as well as

statistical analysis and systems-biology

research on the data. In the case of

hundreds of phenotype-relevant genes or

chemicals discovered in a single screen,

the quantitative measurement of multiple

cellular phenotypes enables those samples

to be sorted into distinct subtypes for

further analysis and characterization, as

has been done recently for mitotic-spindle

defects [2] and defects in cytokinesis [3].

Researchers have also identified situations

where automated image analysis can ‘‘see’’

phenotypes invisible to humans. For

example, researchers typically cannot dis-

tinguish cells in the G1 phase of the cell

cycle from those in G2 by looking at

images of DNA-stained cells, but automat-

ed algorithms can do so by quantifying the

fluorescence intensity of the DNA in each

nucleus [4]. Computers have also been

able to distinguish the subtle differences

between localization patterns that seem

identical to a human investigator [5].

Educational Article Overview

Although learning about image analysis

can be daunting, an understanding of the

basics is critical for successful analysis. The

effort will pay off whether planning a

high-throughput screen, a time-lapse ex-

periment, a systems-biology project, or

just analyzing a small-scale experiment

quantitatively.

In this article, we give an overview of

the basic concepts of automated image

analysis, using simple techniques that are

useful for two-dimensional fluorescence

images of cultured cells as an example.

We walk through a typical image-analysis

workflow (Figure 1), explaining the basic

concepts, methods, and software for de-

termining which pixels in an image belong

to each cell or cellular compartment and

measuring interesting properties of these

objects, as well as alternative approaches
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for images in which identifying each object

is infeasible.

Throughout this tutorial, we will use the

example of a cell-based fluorescence mi-

croscopy assay for DNA-damage regulators

(Figure 1). The goal in this assay is to

identify samples where cells show an

unusually strong or unusually weak re-

sponse to DNA damage by counting the

number of DNA-damage-induced foci per

cell. The foci are labeled by an antibody

that recognizes the phosphorylated form of

a protein that responds to DNA damage.

We and our collaborators have used this

assay to screen chemical compounds and

genes (using RNA interference) in human

cells and Drosophila melanogaster cells to

identify regulators of DNA-damage-re-

sponse pathways (Scott Floyd, Michael

Pacold, Thouis R. Jones, Anne E. Carpen-

ter, and Michael Yaffe, unpublished data).

This is only an introductory taste of how

image analysis works, exemplified by one

particular application area. We do not

attempt a comprehensive review of bio-

logical image analysis but instead point the

reader to excellent resources in the field

(see Box 1). These resources are more

comprehensive review articles that cover

the latest developments in the broader

world of biological image analysis, includ-

ing analysis for three-dimensional image

stacks, time-lapse images, analysis of whole

organisms, and imaging modalities like

brightfield microscopy, differential-inter-

ference-contrast imaging, electron micros-

copy, and biomedical imagery (MRI and

PET scans of humans or model organisms,

for example).

Image Analysis Basics

A digital camera attached to a micro-

scope divides the field of view into a grid of

pixels. The intensity of the light absorbed

by a pixel is recorded as that pixel’s

numerical value. The digital image that

the computer has to work with for image

analysis, then, is a grid of numbers, each of

which indicates the intensity of light in a

small part of the field of view. If different

channels are imaged (e.g., for different

fluorescent wavelengths), there will be one

such grid for each channel. The role of

image analysis is to transform these grids

of numbers into measurements of biolog-

ical relevance, such as the number of cells

and the number of DNA-damage-induced

foci. As we will later see, a wide diversity of

phenotypes of biological interest can be

measured from images, including the

amount of DNA in each nucleus, the

degree of cytoplasm-nucleus translocation,

and the presence of biologically relevant

morphologies.

Identifying Image Foreground

The most challenging part of image

analysis is usually determining which pixels

in the image belong to each object (e.g., a

nucleus, cell, or organism). This task is

known as segmentation. In our example

(Figure 1), we wish to segment individual

nuclei and individual DNA-damage-in-

duced foci (in both cases to count them

and measure their intensities), and we also

wish to segment the cells to identify their

borders and thus measure each cell’s

morphology. The first step toward segmen-

tation is to distinguish foreground (objects

of interest) from background. Thresholding

methods [6] classify a pixel as foreground if it

is brighter than a certain ‘‘threshold’’

intensity value. (Cells appear as bright

objects on a dark background in fluorescent

microscopy images. Other image types can

use the same techniques by first inverting the

image, turning dark regions into bright

regions and vice versa.) Because of varia-

tions in staining and illumination, choosing

a single threshold for all locations in all

images is not always effective. Thus, the

challenge is to determine appropriate

threshold(s) automatically for each channel

in each image. There are two main

approaches to doing so:

Global thresholding algorithms compute

a single threshold for each image. One

method for global thresholding is by

mixture models, which fit a mixture of

two probability density functions (one for

the foreground, one for the background) to

the intensity histogram of the image, as

illustrated in Figure 2. Mixture models

work well when the histogram is clearly

bimodal or when the mixture probability

(the percentage of pixels that belong to the

foreground) is known. Working with the

logarithm of the intensities is often helpful

because it can reduce the skewness of the

intensity data. Another method, proposed

by Otsu [7], chooses the threshold that

minimizes the weighted sum of the

intensity variance within each of the pixel

classes (foreground and background). Ot-

su’s method is often superior when the

percentage of pixels belonging to the

foreground varies substantially from image

to image.

Local (a.k.a. adaptive) thresholding meth-

ods use different thresholds in different

parts of each image, as illustrated in

Figure 3. The threshold for a pixel is

based on the intensity statistics of a local

neighborhood rather than the entire

image. Such methods are useful when

the intensity of the background varies

across the image due to uneven illumina-

tion or sample preparation. A danger with

this approach is that if a part of the image

contains tightly clustered objects (all fore-

Figure 1. Overall image analysis workflow for a typical experiment. First, variations in illumination and staining are corrected. Nuclei are
identified by thresholding, then used as seeds to identify cell edges. Finally, DNA-damage foci are identified. Schematic data shown, based on image
courtesy of Scott Floyd, Michael Pacold, and Michael Yaffe. Colors of nuclei, cells, and foci are arbitrary.
doi:10.1371/journal.pcbi.1000603.g001
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Box 1. Resources for further exploration

The following suggestions do not represent a comprehensive listing. Rather, the sampling of resources listed here should guide
the interested reader to begin exploring the field of image analysis for microscopy.

Review articles:

N Biological image analysis in general, especially geared towards biologists [40]

N Biological image analysis in general, especially geared towards computer scientists [41]

N Large-scale or high-throughput microscopy screening of chemical or genetic perturbants [42–50]

N Image-acquisition pitfalls [51]

N Infrastructure and informatics for high-throughput image acquisition and analysis [52–55]

N Imaging modalities [56]

N Thresholding methods [57]

N High-throughput microscopes [58,59]

N Time-lapse and three-dimensional biological image analysis [25,60]

N Electron microscopy image analysis [61,62]

N Confocal image acquisition [63]

N Image acquisition and analysis for colocalization studies [64,65]

N Image analysis for characterizing fluorescence localization [26]

N Image acquisition and analysis for nuclear substructures [66]

N Online resources for biological image analysis, including software [67]

Societies/conferences: Major conferences and societies covering biological image analysis are the BioImage Informatics
conference (http://www.bioimageinformatics.org), the International Society for Advancement of Cytometry (ISAC, http://www.
isac-net.org/), and the Society for Biomolecular Sciences and its Data and Image Analysis Special Interest Group (http://www.
sbsonline.org). Also useful is the Microscopy Society of America (http://www.msa.microscopy.org) and the Optical Society of
America (http://www.osa.org). With a stronger computer science perspective are the workshops on Microscopic Image Analysis
with Applications in Biology (http://miaab.org), IEEE International Symposium on Biomedical Imaging (ISBI) conferences (http://
biomedicalimaging.org), and SPIE (http://spie.org).

Training/workshops: Opportunities for learning about microscopy and image analysis include workshops and tutorials
affiliated with the conferences and societies listed above, as well as companies that offer training for their microscopes and
software. Other courses available include those organized by the Marine Biological Laboratory at Woods Hole (http://www.mbl.
edu/education/courses/special_topics), Cold Spring Harbor Laboratory (http://meetings.cshl.org), John Russ (http://www.
drjohnruss.com/courses.html), and EMBL/EMBO courses.

Websites/discussion groups: The High Content Imaging Google group (http://groups.google.com/group/highcontent)
provides listings of software, hardware, conferences, and resources for the field. Helpful tutorials about image analysis and
image acquisition have been collected at the ‘‘Molecular Expressions’’ Optical Microscopy Primer (http://micro.magnet.fsu.edu/
primer/index.html).

Journals publishing image-analysis techniques: Cytometry, Journal of Microscopy, Microscopy Research and Technique,
Microscopy and Microanalysis, Microscopy Today, Nature Photonics, Journal of Biomolecular Screening, Bioinformatics, BMC
Bioinformatics, Neuroinformatics, Journal of Biomedical Informatics, IEEE Transactions on Pattern Analysis and Machine Intelligence,
International Journal of Computer Vision, Proceedings of SPIE, IEEE Transactions on Medical Imaging, and IEEE Transactions on
Image Processing. Primary research is also published in the proceedings of the following conferences: IEEE International
Symposium on Biomedical Imaging (ISBI), International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI), International Conference on Image Processing (ICIP), IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), and
International Conference on Computer Vision (ICCV).

Books: A helpful overview of many issues in biological image analysis is the book Microscopic Image Analysis for Life Science
Applications, by Rittscher, Wong, and Raghu [68], which covers types of microscopy, probe selection, and image-analysis
techniques relevant for biological images. The Image Processing Handbook, by John Russ [69], and Digital Image Processing, by
Gonzales and Woods [70], are helpful overviews for image analysis and image processing in general.

Image analysis software: There is no one-size-fits-all software package for all goals in biological image analysis. Different
software is geared for different applications (e.g., time-lapse, three-dimensional, and particular cell types like neurons). The
Internet Analysis Tools Registry (http://www.cma.mgh.harvard.edu/iatr/display.php?spec = all) and The American Society for Cell
Biology (http://cellbase.ascb.org/research.html#Vendors) provide guides to software. For the workflow used as an example in
this article (two-dimensional, high-throughput images), the following software are some examples (note that this list is not
comprehensive):
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ground) or no objects (all background), the

intensity statistics of the local area reflect

only one class. One can detect that this

condition occurs for a local neighborhood

and instead interpolate from the thresh-

olds of nearby pixels [8].

An alternative to local thresholding is to

use global thresholding on images that

have first been corrected for intensity

variations in a separate preprocessing step

known as illumination correction or bias

correction. A smooth illumination function

is fitted to the image, as described later.

The intensity of each pixel is then adjusted

by dividing by the value of the illumina-

tion function at that position. This adjust-

ment improves segmentation; in our

example assay, the slight decrease in lamp

intensity at the edges of the images is

barely noticeable by eye but causes dim

foci there to be overlooked by automated

algorithms.

Figure 4 shows an example of illumina-

tion correction, using brightfield images of

C. elegans, where the illumination patterns

are more visible as compared to typical

fluorescence images. This correction, fol-

lowed by global thresholding, yields a

result similar to that of local thresholding,

but at a lower computational cost. The

illumination function can be calculated by

median filtering or by fitting a polynomial

or spline surface, with the latter two being

more resilient to overfitting and therefore

more robust [9]. The function can be

adjusted by placing more weight on pixels

that are likely to be background. If the

illumination variations are consistent be-

tween images in the set, fitting the

illumination function to an average of

several images, perhaps even the entire set,

increases robustness.

Alternatives to thresholding are needed

when the intensity inside the objects of

interest is not markedly different from that

of the background, as in many brightfield

images. In these cases it is sometimes

possible to classify pixels as foreground

and background based on other features,

such as local intensity variation or texture.

It can be extremely difficult to choose a

priori features that can identify the fore-

ground; a more fruitful strategy has been

to extract a large number of image

features, hand-select some areas inside

and outside the objects of interest, and

use machine learning to find combinations

of features that distinguish foreground

from background [10,11].

Noisy or low-contrast images can some-

times be handled more easily if assump-

tions can be made about the objects’

shapes. For instance, the circular Hough

and Radon transforms [12] can identify

circular objects such as nuclei [13] and red

blood cells [14], and spatial filters fit to a

set of example objects can help identify

similarly shaped objects by improving

contrast [15]. Level-set methods, which

constrain the objects’ shape (among other

properties) implicitly in the form of an

energy functional, have proven effective

for nuclei [16]. Identifying nuclei in tissue

is much more difficult; some authors have

reported success with template matching

[17] or region-growing methods [18],

while others have had to use manual

seeding, where the researcher clicks once

on each nucleus in the image [19].

Splitting Clusters of Objects

Once foreground has been distin-

guished from background, additional pro-

cessing is necessary to separate touching

objects, as in Figure 5A. There are many

algorithmic approaches to this problem;

we describe here, as an example, a three-

step process that is quite successful for

many kinds of objects, including nuclei

and DNA-damage-induced foci. The first

step determines approximate centers of

each object in the cluster. This can be

accomplished in two ways, depending on

the type of object: when objects are bright

in the middle and dimmer towards the

edges (the most common case for nuclei

and DNA-damage-induced foci, both in

fluorescent and brightfield images), identi-

fying local intensity maxima in the

smoothed image (Figure 5B) works well.

When objects are not clearly brighter in

the middle but quite round (commonly

seen in brightfield images of yeast colo-

nies), it is better to identify local maxima in

the distance transform of the thresholded

Commercial vendors: MetaMorph, ImagePro Plus, ThermoFisher Cellomics, GE InCell, PerkinElmer Evotec Opera, Molecular
Devices MetaXpress, BD Pathway (Atto), CompuCyte, TTP Labtech Acumen Explorer, and Definiens Cellenger. Most of these are
high-throughput microscope vendors and license fees range from thousands to tens of thousands of dollars per year in
addition to the cost of the microscope. These software packages generally have polished user interfaces and are well integrated
with the microscope hardware and image-acquisition process. Software like MATLAB is available for programmers.

Open-source software projects: ImageJ [71] has a large user community that has produced hundreds of plugins for different
applications. It is also possible to write or record macros to automate tasks, or to use ImageJ as part of custom-written analysis
programs. Our own group has created CellProfiler [72,73], an open-source software package that is tailored for automated high-
throughput image analysis (http://www.cellprofiler.org). The FARSIGHT project (http://www.rpi.edu/ roysab) is developing
multi-dimensional image-analysis tools for microscopy data. For developers, ITK (http://www.itk.org) is an open-source library of
algorithms and software tools for image analysis and VTK (http://www.vtk.org) is an open-source system for 3D computer
graphics, image processing, and visualization.

Figure 2. Thresholding by mixture models. Mixture models derive a threshold from two
density functions (one for the background, one for the foreground) fitted to the distribution of
intensities in the image. Units are arbitrary. Original image from project described in Moffat et al.
[80].
doi:10.1371/journal.pcbi.1000603.g002
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image (Figure 5C). The distance transform

computes each pixel’s value as the distance

to the nearest background pixel, thus

emphasizing indentations.

The second step identifies the dividing

lines between touching objects using the

‘‘seeded watershed’’ algorithm [20]. The

name of this algorithm alludes to the

analogy of visualizing the image as a

landscape. Each pixel’s inverted intensity

becomes its altitude in the landscape, so

dark and bright regions become hills and

valleys, respectively. Holes are drilled at

each local minimum in the landscape (the

‘‘seeds’’) and water pumped in at constant

vertical speed. The points where the

bodies of water meet are adopted as

dividing lines between objects. This algo-

rithm may be applied directly to images

where the dividing lines between objects

are dimmer than the objects, as is typically

the case for nuclei and DNA-damage-

induced foci. When no such dim dividing

lines exist, as is typically the case for

brightfield images of yeast colonies, the

algorithm can instead be applied to the

distance-transformed image, as shown in

Figure 5D; then, the dividing line between

the two objects is determined by their

shape rather than by intensity changes

between objects, and will usually be placed

where indentations occur along the edge

of the clumped objects [8].

The third and final step discards or

merges objects based on models of what

the objects should look like. For example,

objects below a certain size can be

discarded as debris, neighboring objects

with similar intensities (or other relevant

features) can be merged, or the watershed

algorithm can be applied again to the

distance-transformed image in order to

break up remaining clusters [18].

Identifying Subcellular
Compartments

Cultured cells in high-throughput ex-

periments are usually stained with multiple

fluorescent markers, each of which labels a

particular component or subcellular com-

partment of interest. Identifying the vari-

ous subcellular compartments based on

these stains is often required to obtain

measurements that pertain to the biolog-

ical process being studied. In our example,

a DNA stain labels the nuclei; cytoskeletal

markers, such as for actin or tubulin, label

the cell overall; and the third channel is

used for an antibody that stains DNA-

damage-induced foci.

The nuclei of cultured cells can usually

be identified with the illumination correc-

tion, thresholding, and declustering meth-

ods described in the previous sections

because fluorescent DNA markers are

specific and yield a good contrast between

foreground and background. DNA-dam-

age-induced foci are similarly analyzed,

and given an appropriate marker, mito-

chondria, lysosomes, and other subcellular

compartments can usually be identified by

similar methods. Identifying the cytoplasm

in fluorescent images poses a larger

problem because the available markers

(tubulin in our example) often yield low

contrast and unclear boundaries between

cells, depending on the cell type and

culture conditions. An effective strategy

has been to use region-growing methods

(such as seeded watershed) to expand the

cells around the previously identified

nuclei [18]. A recent improvement uses

not only the intensity gradient but also the

distance to the nucleus to decide where to

divide clustered cells [21]. It is sometimes

unnecessary to precisely identify the cell

boundaries: for instance, to determine

whether a protein is predominantly in

the nucleus or the cytoplasm, it can be

sufficient to measure the average intensity

of a protein in the nucleus and in a ring-

shaped region around the nucleus, as a

proxy for the cytoplasm.

Measurements

Once cells and subcellular compart-

ments are identified, they can easily be

measured. While the following categories

of general measurements are sufficient for

most assays [22], measurements can also

be designed for specific assays and appli-

cations [23]. Measuring a variety of

cellular features beyond the primary

readout/phenotype of interest is often

useful for downstream categorization of

samples, as we will see later.

Counts
In our example assay, the primary

readout of interest is the number of

DNA-damage-induced foci per cell. The

number of objects per image is often a

useful readout in screening, even if only as

a quality-control metric to ensure that cells

have not been killed by the treatment.

Size
The area of the image that is occupied

by a cell, nucleus, DNA-damage-induced

focus, or any other labeled cellular com-

Figure 3. Local thresholding. Local thresh-
olding methods compute the threshold ta for
a pixel a from statistics of intensities of pixels
{i} in a neighborhood Na of a rather than from
the entire image I. Original image from project
described in Moffat et al. [80].
doi:10.1371/journal.pcbi.1000603.g003

Figure 4. Illumination correction. (A)
Brightfield image of C. elegans worms not
amenable to thresholding because of intensity
variations. The color bar on the right of the
image shows that brighter pixels are displayed
as red and dimmer pixels as blue. Original
image from the project described by Moy
et al. [32]. (B) Contour plot of smooth
illumination function fitted to one or a set of
images such as (A). (C) Corrected image
obtained by pixel-wise division of (A) by (B).
(D) Worms in the corrected image are
consistently darker than the background and
can therefore be identified by thresholding.
doi:10.1371/journal.pcbi.1000603.g004

Figure 5. Splitting clusters of objects. (A)
Thresholding this image of two nuclei results
in one continuous outline rather than two
objects. Original image from project described
in Moffat et al. [80]. (B) The local maxima in
the smoothed image correspond poorly with
the centers of the nuclei. (C) The local maxima
(red squares) in the distance transform of the
image (shown as contours) correspond well
with the centers of the nuclei. (D) Seeded
watershed from the local maxima in (C)
divides the cluster correctly.
doi:10.1371/journal.pcbi.1000603.g005
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partment can be measured. Keep in mind

that the apparent two-dimensional area of

an object may or may not be a good proxy

for the volume of the object, depending on

the cell type’s growth characteristics (e.g.,

flat or spherical). In some cases, area may

be a measure of cell attachment rather

than cell size.

Intensity
The intensity of a pixel is related to the

amount of marker at that location. Thus,

to a first approximation and assuming the

depth of field is sufficient, the total

intensity is proportional to the amount of

substance labeled. For example, the total

intensity of a DNA label in the nucleus can

be used to identify cell-cycle phases based

on DNA content—a relevant secondary

readout for our DNA-damage screen. As

another example, the intensity of a GFP

reporter reflects the expression level of the

fused gene. The maximal, minimal, mean,

and integrated (total) intensity of each

marker within each subcellular compart-

ment can be measured, as well as corre-

lation coefficients between channels,

which are useful for capturing coexpres-

sion patterns (i.e., colocalization).

Shape
There are a number of shape descrip-

tors, each of which attempts to reduce

some aspect of an object’s shape to one or

a few numbers. For instance, the ratio of

the height and width of the smallest

rectangle containing an object can serve

as a measure of elongation, which may be

of biological interest. As a measure of the

object’s compactness, one can use the

squared perimeter divided by the area.

Zernike shape features are also commonly

used; they describe an object’s shape in

terms of the coefficients of a Zernike

polynomial [24]. Shape measures such as

these can be useful, for example, to

distinguish apoptotic nuclei from normal,

another relevant secondary phenotype for

our DNA-damage screen.

Texture
Texture descriptors characterize spatial

smoothness and regularity for each mark-

er, and are often useful for characterizing

the fine patterns of localization of a

protein. Texture measures fall into three

general categories. Statistical texture de-

scriptors, such as the moments of the

intensity histogram (mean, variance, and

so on), characterize textures as smooth,

coarse, grainy, and so on. Structural

texture measures describe arrangements

of patterns such as stripes. Finally, spectral

texture measures capture periodicity based

on properties of the Fourier spectrum.

Location
While the absolute location of a cul-

tured cell within an image is usually

meaningless, the distance from an organ-

elle to the nucleus or to the cell membrane

can be important. In time-lapse imaging,

change in location over time is of interest

[25].

Clustering
The number of neighboring objects, the

percent of the perimeter touching neigh-

bor objects, and the distance to the nearest

neighbor are measurements that charac-

terize relationships between objects.

Machine-Learning-Derived
Measurements

Machine-learning algorithms have

shown great efficacy in scoring samples

based on sets of positive and negative

controls [26–29]. This is because it is

sometimes necessary to combine several

measurements (among the features out-

lined above, for example) in order to

classify a phenotype of interest versus

controls. Hand-selecting such a combina-

tion of features can be difficult, especially

when linear combinations are insufficient.

Texture and shape features are particular-

ly good examples of features that are

difficult to use as direct readouts, but

effective ‘‘raw material’’ for machine

learning. End-user software tools (e.g.,

Definiens Cellenger [11] and our own

open-source CellProfiler Analyst [30])

readily enable the application of machine

learning algorithms for biological image

analysis.

Alternative Approaches

Despite the successes in this field,

researchers often have images that are

not readily tackled by applying algorithms

in existing software. The typical workflow

as described so far is effective for many,

but certainly not all, two-dimensional

images of cultured cells. Selecting algo-

rithms and adjusting their parameters for a

particular experiment can be daunting

and time-consuming; the expertise of an

experienced image analyst is often essen-

tial. Even with this assistance, many

images remain intractable with ready-to-

use software. Projects involving time-lapse

or three-dimensional image sets, whole

organisms, neuronal cell types, or bright-

field images can be particularly difficult.

Still, researchers have several options if

existing software struggles to accurately

identify and measure the objects of

interest.

The first strategy is to adjust sample-

preparation or image-acquisition tech-

niques to make the images more tractable

with existing software. Aside from the

obvious good practice of consistent sample

preparation and imaging (using automa-

tion where possible), a fix might involve

changing staining concentrations, wash

steps, or exposure times to improve the

signal-to-noise ratio in the images. Using

different staining or imaging techniques

may also ease image analysis; for example,

identifying nuclei from an unstained

brightfield image is extraordinarily diffi-

cult, whereas adding a fluorescent DNA

stain usually makes the identification of

nuclei trivial.

Close collaboration is needed between

the biologist who understands the goals

and limitations of the experimental system

and an image analysis expert who under-

stands how algorithms will be affected by

changes in the imaging protocol. For

example, a computer scientist might

suggest increasing exposure times without

understanding the impact on the health of

live cells in the experiment. Or a biologist

might adjust staining concentrations in a

way that makes structures more visible by

eye but less tractable with a particular

algorithm. Working together to optimize

protocols for an experiment can yield vast

improvements in the data, even in the

absence of complex or customized algo-

rithms. Some general principles for opti-

mizing imaging experiments are discussed

in Box 2.

If, despite these efforts, images are still

intractable to automated analysis but

objects are readily visible by eye, it may

be worth the investment to team up with

computer scientists to develop a new

algorithm (or identify one existing in the

literature). Once validated, the algorithms

can be added to existing open-source

projects to give them a friendly user

interface.

For many images, accurate identifica-

tion and measurement of individual ob-

jects is impossible even by eye; for

example, objects sometimes overlap or

the borders between them are not visible.

This is often the case in images of

neuronal cells that intertwine amongst

each other and images of tissues where

cell boundaries are not distinctly visible. In

some cases, measuring properties of the

image as a whole can quantify the

biological readout of interest. For exam-

ple, segmenting individual C. elegans worms

is often difficult because of clustering and

severe illumination variation. Still, images
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Box 2. Practicalities

Novices are often surprised to find that they cannot rely on their eyes to choose sample preparation, image acquisition, and
image storage techniques that are suitable for quantitative image analysis. The choices made can dramatically impact data
quality, even though the effects of changing these protocols may not be noticeable by eye [74]. In this box we cover some of
the basics; several tutorials are available in Box 1.

Sample preparation: Fundamentally, projects for quantitative image analysis should follow standard principles of good
experimental design: positive and negative control samples should be included and all samples should be prepared and
imaged in parallel under identical conditions. While this seems obvious, it is not unusual for researchers to mistakenly think it is
appropriate to gather images from different experimental batches over the course of months, hoping to obtain quantitative
relative measurements between them. Using lint-free materials and laminar flow hoods will avoid debris in samples, which can
confuse image analysis algorithms. Parameters that should be tested for their effects on subsequent quantitative analysis
include the selection of the labeling techniques (e.g., GFP-labeled proteins, fluorescent dyes, antibody staining), cell density, the
concentration and timing of stains and fixatives, and time points. Multi-well plates are subject to ‘‘edge effects’’ where cells
grow differently as a result of their well’s spatial location on the plate. These problems can be avoided by not using the external
rows and columns of the plate, or by incubating plates at room temperature after seeding [75].

Sample formats: Samples for imaging can be grown on coverslips, in live-cell chambers, on cell or tissue microarrays (usually
with many thousands of samples per microscope slide [59,76]), or in glass-bottom or optically clear plastic-bottom microplates
(96, 384, or 1,536 wells per plate). For microscopes with laser-based autofocusing, black sidewalls work better than clear.

Image acquisition consistency: As is the case with sample preparation, the image acquisition parameters should also be
kept as constant as possible. Lens magnification, auto-focus parameters, filter sets, and exposure times should be tested for
their effects on subsequent image analysis. One common pitfall is having the microscope use an ‘‘auto-exposure’’ setting,
thereby changing the exposure time from one image to another. This precludes quantitative comparison of the intensity of
stains between images. Similarly, changes in lamp or filter settings between samples causes problems; we have noticed poor
measurements due to fluctuations in power supplies that cause lamps to change their intensity transiently, failure to wait for a
lamp to warm up (and thus stabilize its intensity) before collecting images, gradual loss of lamp brightness over its lifetime, and
even unusually bright images due to the microscope room’s door being opened partway through an experiment.

Dynamic range: The exposure time should be set such that the resulting images use a good proportion of the full dynamic
range of the camera without saturating (overexposing) any images [77]. Most microscope-control software allows viewing a
histogram of pixel intensities; the histogram should fill most of the available pixel intensities, but without the spike at the
highest intensity that indicates saturation. Rescaling options that ‘‘stretch’’ each image’s histogram should not be used, even
though doing so inherently utilizes the full dynamic range, because this will preclude comparing intensities between images.

Magnification, resolution, and binning: In general, choosing a higher magnification lens produces higher resolution
images (more pixels per mm2) that yield better quality image analysis. However, this comes at the cost of imaging fewer cells per
field of view, which affects the statistical robustness of an assay. The optimal magnification is thus an empirical question.
Binning combines light received by several adjacent pixels on the camera into a single pixel. This reduces the resolution of the
images but increases the signal-to-noise ratio and the speed of image acquisition. The optimal choice for binning is also
empirical.

Illumination, bias, and background correction: Many microscopes have an option to correct for uneven illumination in
the field of view by a method called white-referencing or white-shading. In brief, an image of a ‘‘blank’’ field of view, called a
white-reference image, is collected at the time of the experiment, and the pattern seen in that image is subtracted from each
image that is collected. Assuming that this a priori correction is done correctly, it generally improves data quality. Some image-
processing software has options for retrospective illumination correction when a white-reference image is not available.

Sampling multiple fields of view: The experimentalist should choose the number of images to acquire for each sample
based on the statistics of the phenotype of interest. Dramatic effects can be readily detectable in a single image of each sample,
whereas subtle or rare phenotypes might require dozens of images per sample to obtain statistically sound results. It is
preferable to avoid capturing the edges of a well or coverslip within the field of view because these regions can confuse
automated algorithms. Also keep in mind that cells can grow abnormally or clump in different locations within a well, so the
choice between a central or peripheral location within the well depends on the characteristics of the cell type and the
phenotype of interest.

Image file format compatibility: Many commercial manufacturers store images in their own proprietary file formats. When
purchasing a microscope, preference should be given to those that enable saving images in a standard format that is easily
readable by standard image analysis software. Efforts have been underway to standardize microscopy image file formats and
metadata such as microscope settings. The most notable success in reading and converting microscopy images has been the
open-source software BioFormats (http://www.loci.wisc.edu/ome/formats.html).

Image file compression: Some file formats (e.g., JPEG) compress the images in a ‘‘lossy’’ manner, meaning that image quality
is sacrificed to reduce file size. These should be avoided for automated image analysis if at all possible. Not all compression is
detrimental, however: some image-compression methods retain the original image information exactly, while reducing the size
of the file. Such ‘‘lossless’’ formats (e.g., PNG and most TIFF formats) are perfectly acceptable for image analysis. Uncompressed

PLoS Computational Biology | www.ploscompbiol.org 7 December 2009 | Volume 5 | Issue 12 | e1000603



with significant mortality can be detected

based on the ratio of dead worm area to

total worm area in the image. These

values can be obtained by thresholding

the inviability-stained images and the

corresponding brightfield images, respec-

tively [31,32].

Another approach to images where

accurate object identification cannot be

achieved is to use machine learning, which

can operate on measurements acquired

from images without first identifying

objects. For example, the WND-CHARM

[27] algorithm constructs a classifier that

can distinguish positive and negative

control images based on arbitrary tiles of

the images rather than identified objects.

As in the machine-learning methods

described above for foreground-back-

ground determination and object segmen-

tation, the measurements used do not have

to be specifically designed to target a

particular biological phenotype of interest,

but rather can be a general set of image

measurements. Of course, results can

sometimes be improved by adding mea-

surements that are customized to the

phenotype.

Statistical Analysis

Statistical analysis is necessary in order

to draw conclusions from the deluge of

measurements in high-throughput imag-

ing experiments. The end goal in our

example screen is to rank-order samples

by the number of DNA-damage-induced

foci per cell and to identify which samples

from the top and bottom of this list are

statistically significantly different from

controls. This step should include identi-

fication and elimination of systematic

spatial artifacts. Spreadsheets, such as

Microsoft Excel, are widely used because

of their familiarity, although they are

unable to handle large screening datasets

and lack sophisticated analysis methods.

High-throughput microscope vendors of-

ten bundle some data-analysis functional-

ity with their instruments and image-

analysis software. Investigators with

knowledge of computer programming

often write custom scripts, e.g., in Python,

Matlab, or R. High-throughput screening

software and general tools for multivariate

analysis and visualization (e.g., GeneData

Screener, SciTegic Pipeline Pilot, and

SpotFire) have proven useful for image-

based measurements, as have tools de-

signed for flow cytometry or microarray

informatics. However, such tools are often

unable to display images linked to data,

handle the huge datasets generated from

images, or effectively handle the hierar-

chical structure of image-based measure-

ments (since each image contains many

objects). These features are gradually

being added to commercial and open-

source software, and tools specific to high-

throughput image analysis data have also

started to emerge. Two open-source

examples are KNIME (http://www.

knime.org) and our own CellProfiler

Analyst [33].

Conclusion

The field of biological image analysis

continues to advance steadily, as computer

scientists attempt to quantify ever more

complex phenotypes in ever more chal-

lenging image types. In addition to

fluorescence-microscopy images of cul-

tured cells from screens, our example in

this tutorial, researchers have been work-

ing towards accurate quantification of

phenotypes in C. elegans and zebrafish.

Other researchers are focused on algo-

rithms for images derived from electron

microscopy as well as from multi-spectral

and multi-dimensional imaging. In paral-

lel, the related field of biomedical image

analysis continues to refine techniques for

whole-animal and human organ and tissue

imaging, including MRI and PET scans.

Historically, many of the techniques

that are useful for biological images were

first developed for other purposes such as

face recognition, satellite surveillance, and

manufacturing quality control. This trend

will likely continue, as the field transitions

to rely more heavily on machine-learning

techniques, for example. A more practical

but very welcome development in the field

has been the increasing compatibility

among various image-acquisition and im-

age-processing software packages. As this

software becomes more modular and

interoperability between systems im-

proves, bench biologists benefit by spend-

ing less time shepherding data from one

package to another and more time design-

ing and interpreting their experiments.

We have only seen the tip of the iceberg

in terms of extracting maximal knowledge

from biological images. Currently, the goal

is typically limited to measuring a precise

biological phenotype at hand to address a

well-constrained biological question. Yet

the richness of information present in

images lends itself to less-biased approach-

es. This is exemplified by efforts to catalog

protein-location information for large

file formats, such as BMP, are also a good choice for image analysis although the file size can be larger. A guide to file formats
can be found on Wikipedia (http://en.wikipedia.org/wiki/Image_file_formats).

Image file bit depth: Bit depth describes the number of data bits used to represent the intensity value of a single pixel and is
also known as bits per pixel. In other words, a file’s bit depth indicates the number of separate grayscale intensity values
(graylevels) that are allowable by the file format:

N 8-bit images have 28 available pixel intensities, with a range of 0–255

N 12-bit images have 212 available pixel intensities, with a range of 0–4,095

N 16-bit images have 216 available pixel intensities, with a range of 0–65,535

Some microscope cameras capture 8-bit images and store them in 8-bit files, which all image-viewing software can display.
Many other microscope cameras capture 12-bit images, which contain finer detail (in terms of graylevels) than 8-bit images.
However, 12-bit file formats are incompatible with most software, so the alternatives are to save the image in an 8-bit format or
a 16-bit format. Saving 12-bit image data in an 8-bit format is not ideal because the conversion will conflate intensity levels and
thereby lose detail. A 16-bit format is thus preferable. Note that some image viewers can only handle 8-bit images, and some
will display 16-bit images as very dark when they contain only 12-bit image data.

Image file storage and retrieval: Images are fairly large (compared to typical text or numerical data) and can be acquired
rapidly; therefore data storage presents some issues to overcome, including procuring sufficient raw storage space and
organizing the images with enough annotation to allow them to be readily retrieved later. This latter issue has been the focus of
several groups [78,79] (http://dough.ece.ucsb.edu/bisquik) as well as commercial electronic lab notebook offerings.
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numbers of human genes [34]. That

particular field has progressed from a

biologist using words to describe the

appearance of a protein’s staining pattern

(at best using a controlled vocabulary) and

subjective selection of a typical example

cell to using quantitative measurements of

many cells to objectively select the most

typical example cells for publication or

display. Even further, quantitative data are

now being used to produce generative

models of each protein’s location. Reduc-

ing a visual pattern to a generative model

enables patterns to be quantitatively com-

pared to each other. This enables identi-

fying samples that yield similar patterns as

well as novel patterns [26,35–39]. Excel-

lent opportunities exist for using quantita-

tive image-derived data in systems-biology

research to gain a global view of the

relationships between genes. This data

source is so far largely untapped.

The demand for accurate image analy-

sis in biology continues to grow. Given the

prevalence of automated microscopes,

large-scale experiments are becoming

more routine, and even small-scale exper-

iments are producing more data than

before: time-lapse images, for example,

can be readily captured and lend a rich

source of dynamic information about

biological systems. Automatic image anal-

ysis benefits biology by enabling quantita-

tive readouts for microscopy, especially for

high-throughput experiments. Although

image analysis is a large field of study,

and myriad methods have been developed

for particular purposes, an understanding

of the basic concepts and techniques will

enable modern biology researchers to

better design and carry out quantitative

image analysis, skills that are likely to be

increasingly necessary as microscopy au-

tomation becomes widespread in biologi-

cal laboratories.
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