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Introduction
Image-based screens for particular cellular phenotypes are a 
proven technology contributing to the emergence of high-
content screening as an effective drug- and target-discovery 
strategy.1 Phenotypic screening has also been proposed as a 
strategy to assess the efficacy and safety of drug candidates 
in complex biological systems2; when applied at early 
stages in the drug-discovery process to relevant biological 
models, quantitative microscopy may help reduce the high 
levels of late-stage project attrition associated with target-
directed drug-discovery strategies. Retrospective analysis 
of all drugs approved by the Food and Drug Administration 
(FDA) between 1999 and 2008 reveal that significantly 
more were discovered by phenotype-based screening 
approaches than by the more broadly adopted target-based 
screening model.3 Screens for phenotypes that can be iden-
tified in a microscopy assay by a single measurement, such 
as cell size, DNA content, cytoplasm-nucleus translocation, 
or the intensity of a reporter stain, are widely used in phar-
maceutical and academic labs, especially in standard cell 
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Abstract
Quantitative microscopy has proven a versatile and powerful phenotypic screening technique. Recently, image-based profiling 
has shown promise as a means for broadly characterizing molecules’ effects on cells in several drug-discovery applications, 
including target-agnostic screening and predicting a compound’s mechanism of action (MOA). Several profiling methods have 
been proposed, but little is known about their comparative performance, impeding the wider adoption and further development 
of image-based profiling. We compared these methods by applying them to a widely applicable assay of cultured cells and 
measuring the ability of each method to predict the MOA of a compendium of drugs. A very simple method that is based on 
population means performed as well as methods designed to take advantage of the measurements of individual cells. This is 
surprising because many treatments induced a heterogeneous phenotypic response across the cell population in each sample. 
Another simple method, which performs factor analysis on the cellular measurements before averaging them, provided substantial 
improvement and was able to predict MOA correctly for 94% of the treatments in our ground-truth set. To facilitate the ready 
application and future development of image-based phenotypic profiling methods, we provide our complete ground-truth and 
test data sets, as well as open-source implementations of the various methods in a common software framework.

Keywords
phenotypic screening, high-content screening, image-based screening, drug profiling

 by Anne Carpenter on May 27, 2014jbx.sagepub.comDownloaded from 

http://jbx.sagepub.com/


1322 Journal of Biomolecular Screening 18(10)

lines and engineered reporter systems.4 Even complex phe-
notypes, which require that machine learning be used to 
combine the measurements of many cellular properties, are 
now scored routinely in some laboratories.5,6 Evidently, 
quantitative microscopy is a versatile and powerful readout 
for many cell states.

Profiling cell-based phenotypes is the next challenge for 
quantitative microscopy.7 The principle of phenotypic profil-
ing is to summarize multiparametric, feature-based analysis of 
cellular phenotypes of each sample so that similarities between 
profiles reflect similarities between samples.8 Profiling is well 
established for biological readouts such as transcript expres-
sion and proteomics.7,9 Comparatively, image-based profiling 
comes at a much lower cost, can be scaled to medium and high 
throughput with relative ease, and provides single-cell resolu-
tion. Although image-based screens aim to score samples with 
respect to one or a few known phenotypes, profiling experi-
ments aim to capture phenotypes not known in advance, using 
label sets that can detect a variety of subtle cellular responses 
without focusing on particular pathways. Such unbiased, phe-
notypic profiling approaches provide an opportunity for more 
opportunistic, evidence-led drug discovery strategies that are 
agnostic to drug target or preconceived assumptions of mecha-
nism of action (MOA). The potential applications of profiling 
are extensive:

�x Predict the MOA of a new, unannotated compound 
by finding well-characterized compounds that have 
similar profiles

�x Identify concentrations of compounds that have off-
target effects

�x Start with a large number of hit compounds yielding 
the same specific phenotype in a screen and select a 
subset for follow-up that represent their diversity in 
terms of overall cellular effects

�x Identify compounds with a novel MOA, suggesting 
new targets

�x Group a large collection of unannotated compounds 
into clusters that have the same MOA

�x Discover synergistic effects of combinations of 
compounds

�x Discover pathway targets possessing synergistic, 
additive, synthetically lethal, or chemosensitizing 
properties from combined genetic perturbation and 
small-molecule perturbation

�x Provide iterative guidance to rational polypharma-
cology strategies

�x Predict the protein target of a compound by finding 
the RNAi reagent that produces the most similar 
profile

�x Identify compounds with cell line–specific effects by 
comparing the compounds’ profiles across many cell 
lines, then relate to mutation status to further define 
MOA and develop patient-stratification hypotheses

Most image-based profiling experiments thus far have 
been performed at the proof-of-principle scale, with a focus 
on developing computational methods for generating and 
comparing profiles. This article describes and compares 
five methods that have been proposed for profiling and 
shown to be effective in a particular experiment. The meth-
ods range from simple and fast to complicated and compu-
tationally intensive, and they differ greatly in how explicitly 
they take advantage of the individual-cell measurements to 
describe heterogeneous populations. Little is known about 
how the methods compare because each method was pro-
posed as part of a more extensive methodology, often with 
different goals and with different types of data available 
(multiple concentrations, cell lines, or marker sets). We 
extracted the core profiling methods—namely, the algo-
rithms for constructing per-sample profiles from per-cell 
measurements—from the larger methodologies, applied 
them to a typical experiment, and compared their ability to 
classify compounds into MOA. Our test experiment uses a 
physiologically relevant p53–wild-type breast cancer model 
system (MCF-7) and a mechanistically distinct set of tar-
geted and cancer-relevant cytotoxic compounds that induces 
a broad range of gross and subtle phenotypes.10 We provide 
our ground-truth and test data sets and open-source imple-
mentations of the methods to allow others to readily apply 
the methods and to extend the comparative analysis to addi-
tional methods and data sets.

Materials and Methods

Sample Preparation and Image Analysis
MCF-7 breast cancer cells were previously plated in 96-well 
plates; treated for 24 h with 113 compounds at eight con-
centrations in triplicate; labeled with fluorescent markers 
for DNA, actin filaments, and β-tubulin; and imaged as 
described.10 Version 1.0.9405 of the image analysis soft-
ware CellProfiler11,12 measured 453 features (Suppl. Table S1) 
of each of the 2.2 million cells, using the pipelines provided 
(Suppl. Data S1).

Profiling
Before applying any of the profiling methods, the cell mea-
surements were scaled linearly to remove interplate varia-
tion. For each feature, the first percentile of DMSO-treated 
cells was set to 0 and the 99th percentile was set to 1 for 
each plate separately. The same transformation functions 
were then applied to all compounds on the same plate, the 
assumption being that the DMSO distributions should be 
similar on each plate.

Per-sample profiles were computed from per-cell measure-
ments by one of the profiling methods (see below). The treat-
ment profile was constructed by taking the element-wise 
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median of the profiles of the three replicate samples. Using the 
cosine distance between the profiles as a measure of distance, 
each sample was predicted to have the MOA of the closest pro-
file from a different compound (“nearest-neighbor classifica-
tion”). The cosine distance is defined as

1  cos  1  − = −θ AB A B/ ( .

A cosine distance of 0 indicates that two vectors have 
identical directions, and a cosine distance of 2 indicates that 
two vectors have opposite directions. Two vectors are 
orthogonal if the cosine distance is equal to 1.

We chose simple, transparent methods for combining 
replicates, computing distances, and classifying profiles 
because our goal was to compare the core profiling methods 
rather than devise an optimal end-to-end analysis pipeline. 
In a real profiling application, other choices may be advan-
tageous; for instance, the problem of classifying compounds 
into mechanisms is likely amenable to supervised classifi-
cation approaches.

Profiling Methods
Means. The average is taken over all scaled features for 
each sample. Adams et al.13 use this method but extend their 
profiles with means for different cell-cycle phases, some 
intensity proportions, and some standard deviations.

KS Statistic . The i-th element of the profile for a sample 
is the Kolmogorov-Smirnov (KS) statistic between the 
distribution of the i-th measurement of the cells in the 
sample with reference to mock-treated cells on the same 
microtiter plate. The KS statistic is calculated by taking 
the maximum distance between the empirical cumulative 
distribution functions (cdfs). Following Perlman et al.,14 
we used a nonstandard “signed” KS statistic that indi-
cates whether the maximum distance is positive or 
negative.

Perlman et al.14 describe this method in the context of a 
more extensive methodology that compares compounds 
over a range of concentrations, trying different alignments 
of the compounds’ concentration ranges in order to produce 
a “titration-invariant similarity score.” This procedure is 
independent of the underlying core profiling method and 
could therefore be used with any of the five methods tested 
here. We did not use it because the cosine distance was a 
stable measure of profile similarity in our experiment, even 
across concentrations (data not shown).

Normal Vector to Support-Vector Machine Hyperplanes. Sup-
port-vector machines (SVMs) were trained to distinguish 
the cells in each sample from mock-treated cells on the 
same microtiter plate.

SVM recursive feature elimination (SVM-RFE) starts by 
training an SVM model to distinguish a treatment from 
DMSO. The prediction accuracy is estimated using cross-
validation. The n measurements with the lowest weight are 
then removed, and a new model is trained using the remain-
ing measurements. This continues iteratively until one fea-
ture remains. Finally, the SVM model with the best 
prediction accuracy is selected. The best feature selection 
accuracy is theoretically obtained by removing one feature 
at a time (SVM-RFE1); however, this is computationally 
expensive. Therefore, following Loo et al.,15 we used SVM-
RFE2, which removes the 10% of the measurements with 
the lowest weight at each iteration. To eliminate more mea-
surements, Loo et al.15 eliminated measurements until the 
prediction accuracy fell below 0.9 × ((Cmax – Cmin) + Cmin), 
where Cmax is the maximum prediction accuracy and Cmin 
the minimal prediction accuracy over the full range of a 
selected number of measurements.

Gaussian Mixture Modeling. To build Gaussian mixture 
(GM) profiles, 10% of the data were subsampled uniformly 
across all samples. This selection was mean-centered, after 
which the data were transformed using principal-compo-
nent analysis (PCA), retaining enough principal compo-
nents to explain 80% of the variance (~54 for our data set). 
Next, a GM model was fit to the data using the expectation-
maximization (EM) algorithm. The algorithm was initial-
ized with unit covariance and the centroid positions obtained 
using the k-means algorithm. The starting positions of the 
centroids in the k-means algorithm were initialized ran-
domly, meaning the algorithm is nondeterministic. The 
Gaussians resulting from the EM algorithm were used as a 
model for the remaining 90% of the data. The rest of the 
data were centered using the mean of the data that was used 
to build GM models and projected into the same loading 
space. For each cell, the posterior probability of belonging 
to each of the Gaussians was computed. Profiles were con-
structed by averaging these posterior probabilities for each 
compound concentration. The number of values in a profile 
is thus equal to the number of Gaussians used to model the 
data. The best number of Gaussians was chosen 
empirically.

Factor Analysis. This method attempts to describe the covari-
ance relationships between the image measurements x in 
terms of a few latent random variables y called factors. The 
factors are drawn from an isotropic Gaussian distribution. 
The observed image measurements x are modeled as an 
affine transformation Ay + µ of the factors and a measure-
ment-specific noise term ν:

x Ay= + +µµ νν
.

(2)

(1)
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The observed measurements are assumed to be condi-
tionally independent given the factors; in other words, ν ~ 
N(0, Σ), where Σ = diag(σ1, …, σd). We estimate A, µ, and 
Σ by an EM algorithm16 implemented in the MDP toolkit 
(http://mdp-toolkit.sourceforge.net/). Then, we can com-
pute the profile of a sample as the maximum a posteriori 
estimate of y:

E   T T 1
y x A AA x| n n[ ] = +( ) ( )−

ΣΣ µµ−

where xn is the vector of per-cell measurements in sample n 
averaged over the cells in the sample.

Available Data
To facilitate the development and evaluation of additional 
profiling methods, we provide our ground-truth annotations 
(Suppl. Table S2) and the measurements of each of the 
~450,000 cells whose treatments are annotated. The data 
are supplied as comma-delimited files together with scripts 
for loading them into a MySQL database (Suppl. Data S2). 
The data schemas are described (Suppl. Text S1).

The images and metadata have been deposited with the 
Broad Bioimage Benchmark Collection (http://www.
broadinstitute.org/bbbc/),17 accession number BBBC021.

Software Implementations
The profiling methods are implemented as part of the open-
source image data-analysis software CellProfiler Analyst 
(http://cellprofiler.org/). The implementations do not make 
assumptions that are particular to our experiment and can be 
readily applied to measurement data from the widely used 
image-analysis software CellProfiler11,12 or data from other 
sources that can be imported into CellProfiler Analyst or 
otherwise converted to CellProfiler’s database schema. The 
implementations contain support for parallel processing on 
a cluster of computers. The profiling methods can be exe-
cuted as scripts from the Unix command line or used in 
Python programs as a module (Suppl. Text S2).

Reproducibility
We provide complete source code to readily reproduce most 
figures, tables, and other results that involve computation 
(Suppl. Text S3; Suppl. Data S3). Supplemental Table S6 
was constructed manually/interactively and is not 
reproducible.

Results
We implemented five proposed methods13–15,18,19 for con-
structing per-sample profiles from per-cell measurements in 

a common computational framework. We benchmarked the 
five methods on images we had previously collected of 
MCF-7 breast cancer cells treated for 24 h with a collection 
of 113 small molecules at eight concentrations (Suppl. 
Table S3). The cells were fixed; labeled for DNA, F-actin, 
and β-tubulin; and imaged by fluorescent microscopy. For 
this study, we measured 453 standard cytometric measure-
ments (Suppl. Table S1) of each cell using CellProfiler11,12 
and applied each of the five profiling methods. To be able to 
evaluate the performance of the profiling methods, we lim-
ited our attention to a subset of the data (our “ground-truth” 
data set) for which we were confident that the primary 
MOA of compounds was achieved at the concentration 
tested during the course of the experiment. (The term mech-
anism of action is used rather loosely here and refers to a 
sharing of similar phenotypic outcomes among different 
compound treatments, rather than referring strictly to mod-
ulation of a particular target or target class.) The mechanis-
tic classes were selected so as to represent a wide cross 
section of cellular morphological phenotypes. The differ-
ences between phenotypes were in some cases very subtle: 
We were able to identify only 6 of the 12 mechanisms visu-
ally; the remainder were defined based on the literature. 
This carefully collected ground-truth data set consisted of 
38 compounds at active concentrations. Some compounds 
were active at only one concentration and some at up to 
seven concentrations, for a total of 103 treatments (active 
compound concentrations) spanning 12 mechanistic classes 
(Suppl. Table S2; Suppl. Fig. S1). The mock treatment 
DMSO was included as a negative control. Using the cosine 
distance as a measure of profile dissimilarity, we classified 
the 103 treatments into MOAs by assigning to each profile 
the MOA of the most similar profile (Fig. 1, top). When 
classifying a treatment, all concentrations of the same com-
pound were held out from the training set in order to prevent 
overtraining. The samples were prepared and imaged in  
10 batches, but classes and replicates were distributed 
across batches and plates, respectively, so as to avoid bias-
ing the classification (Suppl. Text S4).20 Using this experi-
mental data set, we tested five profiling methods  
(Fig. 1A–E), as detailed below.

Means
We first constructed profiles in the simplest way we could 
envision: average each measurement over the cells in the 
sample (Fig. 1A). A profile thus consists of a single value for 
each of the 453 features. This was the main approach used by 
Tanaka et al.21 to discover an inhibitor of carbonyl reductase 
1, although their profiles also included some statistics other 
than the mean.13 With this profiling method, 83% of the com-
pound-concentration profiles could be classified correctly 
(Table 1). The cosine distance remained effective despite the 
high dimensionality of the measurements, so there is no 

(3)
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significant compression of distances, a common problem in 
high-dimensional data analysis in which the distance to the 
nearest point approaches the distance to the farthest point 
(Suppl. Fig S2). This indicates that most of the measure-
ments contribute information about MOA and are not simply 
redundant measurements that add noise.22

That small-molecule effects could be characterized so 
well by the shift in means was unexpected because many 
treatments induce a heterogeneous phenotypic response 
across the cell population in each sample. For instance, 
treatment with microtubule destabilizers produced a mix-
ture of ~44% mitotic cells, ~27% cells with fragmented 
nuclei, ~16% cells with diffuse and faint tubulin staining, 
and ~12% cells with an appearance similar to mock-treated 

cells. Even though the “means” method made no attempt to 
model the subpopulations of cells, it was mostly able to dis-
tinguish microtubule destabilizers from microtubule stabi-
lizers, which also block in M-phase and therefore also 
caused a high proportion of mitotic cells (Suppl. Table S4). 
There was room for improvement, however; in particular, 
many microtubule stabilizers and actin disruptors were mis-
classified as other MOAs. DNA damage agents and DNA 
replication inhibitors were consistently confused.

Although the image features that are most influential in 
distinguishing each mechanism of action from the rest 
(Suppl. Table S5) are largely expected (e.g., the texture of 
actin staining in the cytoplasm is important for distinguish-
ing actin disruptors), it is notable that the profiles generally 
obtain their discriminatory power from a combination of 
image features.

Some other population statistics (medians, modes, and 
means combined with standard deviations) gave similar 
results. Medians combined with median absolute deviations 
achieved higher accuracy (88%), mainly by being better 
able to distinguish DNA damage agents and DNA replica-
tion inhibitors (Suppl. Fig. S3).

KS Statistic
Perlman et al.14 used the KS statistic as part of their titra-
tion-invariant similarity score profiling method. The KS 

Figure 1. Overview of approach. (Top) Experimental design. Cultured cells in microtiter plates were compound treated, labeled, 
fixed, and imaged. The image analysis software CellProfiler measured 453 properties of each cell. One of the profiling methods under 
investigation condensed these measurements into a profile (vector of numbers) that describes each sample. A sample with unknown 
mechanism of action (MOA) was predicted to have the same MOA as the sample whose profile is most similar to that of the unknown 
sample, using the cosine of the angle between the profiles as measure of similarity. (Bottom) Illustrations of the five profiling methods 
tested. (A) Means of raw per-cell features. (B) Kolmogorov-Smirnov (KS) statistic relative to negative control. (C) Normal vector 
of decision plane of linear support-vector machine (SVM) versus negative control. (D) Proportion of cells in each component of a 
Gaussian mixture (GM). (E) Latent feature extraction using factor analysis.

Table 1. Accuracies for classifying compound treatments into 
mechanisms of action.

Method Accuracy, %

Means 83
KS statistic 83
Normal vector to support-vector  

machine hyperplane
81

 With recursive feature elimination 64
Distribution over Gaussian  

mixture components
83

Factor analysis + means 94
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statistic is calculated separately for each treatment and mea-
surement. It is the maximal difference between the cumula-
tive distribution function (cdf) of the measurements of the 
treated cells and the corresponding cdf of mock-treated 
cells (Fig. 1B). This method is more computationally 
expensive than simply computing the mean but can be more 
sensitive: For example, a hypothetical treatment that causes 
some of the cells to shrink and the rest to grow could leave 
the mean cell size unchanged but would increase the KS 
statistic.

The method based on the KS statistic reaches a predic-
tion accuracy of 83% (Table 1). As with the means method, 
DNA damage agents and DNA replication inhibitors were 
confused (Suppl. Fig. S4B). Many DNA damage agents 
were additionally misclassified as Aurora kinase inhibitors, 
and there was some confusion between microtubule desta-
bilizers and Eg5 kinesin inhibitors.

Normal Vectors to SVM Hyperplanes
Loo et al.15 describe a multivariate method that trains a lin-
ear SVM23 to distinguish compound-treated cells from 
mock-treated cells. The SVM constructs the maximal-mar-
gin hyperplane that separates the compound-treated and 
mock-treated cells in the feature space. The normal vector 
of this hyperplane is adopted as a profile of the sample  
(Fig. 1C). The method classified 81% of the treatments cor-
rectly (Table 1).

The methodology of Loo et al.15 additionally uses SVM-
RFE to remove redundant and noninformative measurements 
from profiles and replace them with zeros in order to increase 
the sensitivity of analysis and make profiles more interpreta-
ble. This feature elimination is done independently for each 
treatment. Adding this step reduced the classification accuracy 
to 64% (Table 1). Inspecting the lists of features chosen gives 
a clue to why: The SVM is being trained to distinguish a com-
pound from DMSO, so the features most useful for this pur-
pose are selected. These features are not generally the same 
features that are useful for distinguishing compounds with dif-
ferent MOA. Indeed, features preferentially retained by the 
feature-elimination step are often correlated with reduced cell 
count, as almost every active compound has some cytotoxic 
effects: Three of the five most frequently selected features are 
clearly influenced by cell count, having to do with number of 
neighbors and number of cells touching (Suppl. Table S6). 
This behavior is not a flaw in SVM-RFE: It simply magnifies 
the tendency of the normal-vector method to emphasize the 
features that most clearly separate the treated cells from mock-
treated cells.

Distribution over GM Components
To better characterize heterogeneous cell populations, Slack  
et al.18 proposed modeling the data as a mixture of a small 

number of Gaussian distributions and profiling each sample by 
the mean probabilities of its cells belonging to each of the 
Gaussians. This GM method assumes that compound treat-
ment causes cells to shift between a limited number of general 
states. It is indeed generally true that cellular phenotypes 
induced by perturbations can usually be found, albeit at low 
levels, in wild-type cell populations.5 GM models have been 
used in other phenotype-detection applications as well.24

We fitted different mixtures of Gaussians to a subsample of 
~45,000 cells (10% of the cells), with the number of compo-
nents ranging from 2 to 30. A nondeterministic EM algorithm 
was used to fit Gaussians to the data; therefore, the model con-
struction and cross-validation was performed 20 times to 
assess model variability. Twenty-five Gaussians resulted in a 
prediction accuracy of ~83% (Table 1) but with large variation 
depending on the initial conditions (Suppl. Fig. S5). Increasing 
the number of Gaussians beyond 25 does not improve the 
accuracy (Suppl. Fig. S5). Some classification mistakes 
occurred in only some models, whereas others were consistent 
across models (Suppl. Fig. S4E).

The GM method performs equally well whether created 
from control cells or treated cells (Fig. S6), so the mixture 
components may be mainly modeling cellular phenotypes 
that are widely represented rather than phenotypes induced 
by only particular treatments.

Factor Analysis
Although we measured 453 morphological features of each 
cell, it is the underlying biological effects that are of inter-
est. Young et al.19 used factor analysis to discover such 
underlying effects under the assumption that an underlying 
process (factor) affects several measurements and that vari-
ations restricted to a single measurement are noise.

We trained a factor model on a random subsample of 
~45,000 control cells (15% of the control cells in the experi-
ment). We computed the maximum a posteriori estimate of 
the factors given each cell and averaged these values over 
all cells treated with the same compound and concentration 
to obtain a profile of the treatment. Varying the number of 
factors, we found that the performance was similar to the 
other methods when using ~25 factors but that performance 
increased gradually with the number of factors, reaching a 
plateau at ~50 factors (Fig. 2). Although the procedure is 
nondeterministic, the accuracy generally does not change 
more than 3 percentage points in either direction with a 
given number of factors. With 50 factors, the prediction 
accuracy was 94%, which is substantially better than any of 
the other methods that were tested (Table 1). There was still 
some confusion between DNA damage agents and DNA 
replication inhibitors (Fig. 3).

The improvement in accuracy was not simply due to  
the method’s implicit dimensionality reduction: Reducing 
the dimensionality to 50 by PCA did not lead to 
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an improvement over the means method, and selecting the 
feature most heavily loaded on each of the 50 factors 
decreased the accuracy to 63% (Suppl. Table S7).

The factor-analysis method can be viewed as the means 
method with a preprocessing step that transforms the mea-
surements of each cell into the latent factor space. Although 
factor analysis greatly improves the means method, it does 
not improve the KS statistic method as much. Using it as a 
preprocessing step before any of the other profiling meth-
ods is not helpful (Suppl. Fig. S7).

Most of the factors cannot be readily interpreted by their 
feature loadings (Suppl. Table S8). This is an Occam 
dilemma25: When the number of factors is high enough to 
yield good predictive accuracy, the factors are difficult to 
interpret because they combine numerous features in order 
to pick up on subtle phenotypic differences. Although we 
cannot use direct interpretation to verify that the factors are 
biologically relevant, careful cross-validation and experi-
mental design can guard against bias by batch effects and 
other artifacts20 (Suppl. Text S4).

The factor model performs equally well whether created 
from control cells or treated cells (Suppl. Fig. S9). Because 
the wild-type variation is sufficient to elucidate the relation-
ships between image features and latent factors, the factors 
may be capturing stable, fundamental modes of variation 
for the cell line (viewed through a particular assay and fea-
ture set) and not the extreme changes induced by particular 
treatments.

Discussion
We compared five methods13–15,18,19 for generating per-sam-
ple profiles from image-based cell data in the context of 
classifying small molecules into 12 MOAs based on cellu-
lar morphology. All methods had previously been demon-
strated in distinct experiments, mostly proof-of-principle 
studies, with some yielding biological discovery. However, 
these methods had never before been directly compared on 
a common data set. Each method was previously proposed 
as part of a larger methodology, sometimes including strate-
gies for particular contexts, such as making use of informa-
tion from multiple cell lines or multiple concentrations. 
These strategies can be applied independently of the core 
profiling method; here, we compared only the computa-
tional cores of the profiling methods. We did not evaluate 
the underlying statistical methods (KS, SVM, GM, factor 
analysis), which have solid theoretical foundations and an 
excellent record of solving analysis problems of many 
kinds.

On our data set, the simplest method, which profiles 
compounds by the population means of the measurements 
of the treated cells, performed better than expected, achiev-
ing 83% accuracy in predicting MOA. Because many of the 
measurements are non-Gaussian, we expected nonparamet-
ric KS statistics to be superior, but that was not the case. 
Describing a compound by the decision boundary of a lin-
ear SVM trained to distinguish compound-treated cells 
from mock-treated cells did not offer improvement either 
(83%), and adding a feature-reduction step reduced perfor-
mance (64%). A GM method that tries to model subpopula-
tions of cells with a mixture model might be expected to 
have an advantage in experiments in which the perturba-
tions lead to shifts between a small number of discernible 
cell states (e.g., cell-cycle states), but we did not observe 

Figure 2. Distributions of classification accuracies for 20 runs 
of the factor analysis method for each possible choice of the 
number of factors from 2 to 100. The performance was similar 
to the other methods when using ~25 factors, but the accuracy 
increased gradually with the number of factors, reaching a plateau 
at ~50 factors.

Figure 3. Confusion matrix for the factor-analysis method, 
showing the number of compound concentrations that were 
classified correctly (on the diagonals) and incorrectly (off the 
diagonals), the classification accuracies for each mechanism of 
action (right columns), and overall classification accuracy (number 
of correctly classified compound concentrations divided by the 
total number of compound concentrations). Average outcomes 
over 20 models are shown; dimly colored squares without 
numbers indicate classification outcomes that occurred fewer 
than 0.5 times on average.
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this: Although the treated samples were heterogeneous with 
respect to cellular phenotype, and some phenotypes were 
not specific to any mechanistic class, the GM model per-
formed no better than other methods (83%). The profiles 
that best represented the phenotypes were obtained using 
factor analysis (94% accuracy in predicting MOA). This 
method’s potential limitation of excluding important nonre-
dundant image-based features as noise has been demon-
strated in a screening context in which only 29 measurements 
were made of each cell,26 but with our higher-dimensional 
features, the method proved effective at extracting the 
underlying sources of variation.

Because all of the profiling methods we tested operate 
on measurements at the resolution of single cells, there 
was the potential that some of them might detect effects 
that are present in only a small subpopulation of the cells 
in the sample. However, only the GM method makes 
explicit attempts to model cell subpopulations across 
samples. It was therefore surprising that even the means 
method was sufficient to characterize treatments produc-
ing heterogeneous phenotypic response. Because com-
pound treatments typically affect most cells in a sample 
(although frequently in different ways), our experimental 
results are insufficient to predict the methods’ relative 
performance in RNAi screens in which the interference 
is effective in only a small percentage of the cells. It is 
possible that the KS statistic may work better than the 
mean in such experiments or that the GM method may be 
able to detect a globally popular phenotype even though 
it occurs at a low proportion in a particular sample. It is 
also possible that new profiling methods will be required 
to fully realize the potential of using single-cell measure-
ments to profile samples that are distinguished only by 
small, subtle subpopulations of cells or to be robust to 
off-target effects.

The assay and compound collection chosen for this study 
are typical of a profiling experiment: Morphology assays 
are attractive for profiling because they can capture a wide 
variety of subtle cellular responses without focusing on par-
ticular pathways. However, there may be particular MOAs 
that are not displayed within the assay parameters described 
in this study. One important parameter is time following 
compound exposure. In this study, we chose 24 h following 
compound treatment of cells as this produced an optimal 
mitotic arrest phenotype in the MCF-7 cell line studied. For 
other cell lines or other compound classes, there may be 
added value gained from increasing the biological space of 
profiling studies by combining features quantified from 
multiple assays and applying the profiling methods across 
multiple time points following compound treatment. The 
choice of assay and optimal time point for profiling will 
likely depend on the scientific questions being asked. The 
chemical compounds we tested are commonly studied bio-
active compounds. Therefore, the present study is valuable 

in providing a comparative analysis of methods in the con-
text of one particular (but representative) profiling experi-
ment. Creating and annotating a ground-truth set of 
compounds with known MOA is not trivial; we hope this 
work provides a template for future creation of ground-truth 
data sets.

With the emergence of image-based high-content 
screening across more complex and diverse assay formats 
incorporating co-cultures, stem cells, and model organ-
isms, future studies may demonstrate that particular profil-
ing methods perform better on specific assays, cell types, 
or even focused compound or siRNA libraries. Thus, we 
foresee additional value in providing an analysis frame-
work and a ground-truth data set to facilitate further com-
parisons in the field using alternate data sets or methods. 
We have implemented all five methods and offer the source 
code (Suppl. Text S2), along with our entire set of cellular 
measurements for our ground-truth data set (Suppl. Data S2) 
so that they can aid in the future application, development, 
and comparison of image-based phenotypic profiling 
approaches.
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SUPPLEMENTARY TEXTS
Text S1
Data schemas
This section and Text S3 describe the provided data and com-
puter programs in sufficient detail to reproduce the results of
the paper and to make use of the data and programs in the de-
velopment and evaluation of new methods. The data are stored
in four relational tables:

– supplement Object: one row for each of the 454,793
cells. The primary key (TableNumber, ImageNumber,
ObjectNumber) identifies a cell. The pair of columns
(TableNumber, ImageNumber) is a foreign key into the
supplement Image table. The remaining 476 columns are
the 453 measurements as well as 23 measurements that
were not used for profiling (e.g., horizontal and vertical
position of the cell in the field of view).

– supplement Image: one row for each of the 2,528 fields
of view. The primary key (TableNumber, ImageNumber)
identifies an image. The pair of columns (Image
Metadata Plate DAPI, Image Metadata Well DAPI) in-
dicates the well the image came from. The column
Image Metadata Compound contains the name of the
compound the sample was treated with; it is a foreign
key into the supplement Compound table. The col-
umn Image Metadata Concentration is the concentration
of the compound treatment in M. Together, the pair of
columns (Image Metadata Compound, Image Metadata
Concentration) is a foreign key into the supplement
GroundTruth table.

– supplement GroundTruth: one row for each of the 104
compound-concentrations in our ground-truth set. In
addition to the primary key (compound, concentration),
there is a column moa that contains the mechanism of ac-
tion of the compound. For the mock treatment DMSO,
the moa column contains “DMSO”.

– supplement Compound: one row for each of the 39 com-
pounds in our ground-truth set. In addition to the pri-
mary key compound, there is a column smiles that con-
tains the chemical structure of the compound. For four
of the compounds proprietary to AstraZeneca, structures
are not available. No structure is provided for the mock
treatment DMSO.

We provide the data as tab-delimited text files, together with
SQL statements and scripts for importing them into a MySQL
database. Although our scripts expect to read the data from a
MySQL database, the text files can also be used directly. The
ZIP file that contains the text files is 754 MB. Unpacked, the
text files are 2.1 GB. Imported into the database, the tables are
835 MB.

The script load supplement tables.sh produces a sequence
of SQL statements to create the necessary tables and import
the data from the text files. It takes as argument the directory
that contains the text files. Run the script, then send its output
to MySQL. If you prefer, you can create the tables using the
.sql files in the zip file, then import the data by issuing LOAD

DATA INFILE statements manually to MySQL.

Text S2
Implementations
The profiling scripts are written in Python as part of Cell-
Profiler Analyst (CPA), and depend on the following freely-
available python modules:

– numpy 1.5.1
– CellProfiler Analyst (http://github.com/CellProfiler/

CellProfiler-Analyst/) rev. e33def16b2
– scipy 0.7.1
– progressbar 2.3
– sklearn (scikits.learn) 0.12
– MySQL-python 1.2.3
– MDP toolkit 3.3

The visualization scripts additionally require matplotlib 1.2.
Unless otherwise noted, all dependencies are available through
the Python Package Index (PyPi, http://pypi.python.org/pypi/).

Data access is directed by the CellProfiler Analyst proper-
ties file supplement.properties. You should modify this file to
contain the hostname, etc., for your database server.

All script can be run with the -h option to see a comprehen-
sive list of options and arguments.

Cache: Before you can run any profiling scripts, you must
make a binary cache of the per-cell data using cpa.profiling.
cache, as follows:

python -m cpa.profiling.cache \
supplement.properties /path/to/cache \
"Image_Metadata_Compound = ’DMSO’"

The arguments are the CPA properties file, the directory in
which to store the cache, and a SQL predicate that identifies
the images of mock-treated samples, which will be used as ref-
erence for normalization (see Online Methods).

Subsampling: The GM profiling method and the preproces-
sors construct their models using a subsample of the cells. The
script subsample creates such a subsample. It takes four po-
sitional arguments (CPA properties file, cache directory, sub-
sample output file, and the number of cells to include in the
subsample). The -f option can be used to specify a CPA filter
to select the cells to sample from.

Preprocessors: The scripts cpa.profiling.factor analysis,
cpa.profiling.pca, and cpa.profiling.fasel construct models that
the profiling scripts can use to preprocess the image features.
All three scripts take the same positional arguments:

– the filename of a subsample,
– model size (the number of factors or principal compo-

nents), and
– an output file in which to store the model.
Profiling scripts: The profiling scripts are:
– cpa.profiling.profile mean
– cpa.profiling.profile ksstatistic
– cpa.profiling.profile svmnormalvector
– cpa.profiling.profile gmm
– cpa.profiling.profile factoranalysis mean
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All take the following positional arguments:
– CPA properties file
– Cache directory
– CPA group defining sets of images to be profiled together

In addition, all take the following options:
– --multiprocessing (run on multiple CPUs or CPU

cores)
– --lsf-directory TEMPORARY-DIRECTORY (run in

parallel on a computing cluster using LSF)
– -o OUTPUT-FILENAME (file to store the profiles in)
– -f FILTER-NAME (CPA filter indicating which images

to profile)
As an example, the following command profiles each well

(sample) of the experiment using the “means” method:

python -m cpa.profiling.profile_mean \
-o my_mean_profiles.txt -f noncontrols \
supplement.properties /path/to/cache Well

The profile ksstatistic and profile svmnormalvector scripts
expect an additional positional argument: the name of a CPA
filter that defines the images that are of mock-treated sam-
ples, to serve as reference distribution for the KS statis-
tic and negative training samples for the SVM. The profile
svmnormalvector script accepts the additional option --rfe,
which indicates that recursive feature elimination should be
used. The profile gmm script accepts the additional option
--components NCOMPONENTS, which specifies the num-
ber of mixture components. The profile factoranalysis mean
script accepts the additional options --factors NFACTORS,
which specifies the number of factors, and --save-model
FILENAME, which indicates that the model should be saved
to file.

Post-processing scripts: The script cpa.profiling.median
profiles groups a set of profiles according to a CPA filter given
as an argument and computes the median profile in each group.
The script expects three positional arguments: the properties
file, the filename of the profiles to read (generated by one of
the profiling scripts), and the name of the CPA filter to group
by. The option -o OUTPUT-FILENAME causes the median
profiles to be written to the specified file. As an example,
the following command computes profiles for each compound-
concentration as the median of the replicate samples:

python -m cpa.profiling.median_profiles \
-o my_mean_profiles_per_treatment.txt \
supplement.properties /path/to/cache \
CompoundConcentration

The script cpa.profiling.leave one out performs nearest-
neighbor classification with leave-one-out crossvalidation. It
expects three positional arguments: the properties file, the path
to the cache, and the name of a CPA filter that specifies the
true class of each image. The option -h HOLDOUT-GROUP
specifies a CPA group that defines which profiles to hold out
when classifying a profile. As an example, the following com-
mand classifies per-treatment profiles, holding out all profiles
treated with the same compound as the one being classified,

even if those other profiles were treated with a different con-
centration, and prints the confusion matrix in sparse form to
standard output:

python -m cpa.profiling.leave_one_out \
-H Compound supplement.properties \
my_mean_profiles_per_treatment.txt MOA

The scripts plot profiles and plot distances provide rudi-
mentary visualization of profiles and the distances between
them. To plot per-treatment profiles, group and label them by
MOA, and output a PDF file:

python -m cpa.profiling.plot_profiles \
-o profiles.pdf \
supplement.properties \
mean_profiles_per_treatment.txt MOA

To plot the distance matrix of the profiles, grouped and labeled
by MOA, and output a PNG file:

python -m cpa.profiling.plot_distances \
-o distance_matrix.png \
supplement.properties \
mean_profiles_per_treatment.txt MOA

Text S3
Computer programs
The file reproduce.zip contains four directories: inputs
contains source data for Figure S 9; src contains the source
code, properties contains the CPA properties file, and
outputs contains the generated data files.

The GNU makefile src/Makefile encodes every step to
recreate the results, so typing make in the src directory will
recreate all the output files.

The scripts require CellProfiler Analyst (which include the
implementations of the profiling method). In addition, most
scripts require matplotlib 1.1.0, and calculate aucs.py requires
xalglib 3.4.0 (http://www.alglib.net/).

The scripts in the src directory are as follows:
– mean confusion fa.py computes the mean confusion of

the 20 factor-analysis models.
– mean confusion gmm.py computes the mean confusion

of the 20 Gaussian mixture models.
– pretty-confusion-matrix.py renders a confusion matrix as

a PDF file.
– gmm varycomponents plot.py plots Figure S 5).
– fa varyfactors plot.py plots Figure 2.
– loo confusion.py processes the data from Loo et al.15 for

use in Figure S 9.
– make features table.py generates Table S 1.
– make ground truth table.py generates Table S 2.
– make compounds table.py generates Table S 3.
– make aucs pvalues table.py generate Table S 10.
– calculate aucs.py calculates AUCs and p-values for Table

S 10.
– misclassified.py lists compound-concentrations that were

misclassified.
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Text S4
Classification bias from batch and plate effects
The samples were prepared and imaged in 10 batches. If the
compounds with one mechanism of action were entirely in a
different batch than other mechanisms, there would be a con-
cern that they may be discernible due to differences between
batches rather than biological differences20. In this experi-
ment, however, all MOAs except two are split between two
or more batches (Table S 9). The exceptions are cholesterol-
lowering drugs and kinase inhibitors, which are represented
only in one batch each, but because other mechanisms are also
represented in these batches, there is no reason to believe that
the classification is biased by batch effects.

Text S5
Previous comparisons by classification accuracy
Loo et al.15 evaluated their method, which includes the SVM
normal-vector method at its core, applying four label sets to
a compound set different from ours. Based on the nearest-
neighbor search results in their Supplementary Data 2, we
calculated classification accuracies for their experiments, and
found them to be in the range of 32–51%, depending on the
marker set (Figure S 9). If the best marker set is chosen for
each mechanistic class, the accuracy increases to 68%.

Kümmel et al. 26 assessed several dimensionality-reduction
methods and well-summary approaches in a screening context:
the methods were evaluated by their ability to distinguish cells
treated with each of five compounds from mock-treated cells.
Although the study did not measure ability to distinguish com-
pounds from each other, it is interesting to note that the KS
statistic was found to perform similarly to a simple median
method. Factor analysis led to a decrease in accuracy, although
they only measured 29 features of each cell, so compared to
our experiment it is more likely for useful variation to be re-
stricted to a single measurement, and therefore to be discarded
as noise.

Text S6
Comparison by p-value of AUC
The papers that presented the KS, SVM, and GMM methods
include comparisons to previous methods. Here, we describe
the method of comparison and explain why we compare the
methods using a different method. For the sake of complete-
ness, we summarize the previously published comparison re-
sults and apply the same method to our dataset, using our im-
plementations of the core parts of the profiling methods.

Method of comparison: In all three papers the performance
of a profiling method is quantified in a screening context, using
the distances between compounds as follows. If the profiling
method worked as desired, the distances between compounds
with the same MOA should be smaller than the distances be-
tween compounds with different MOA. Therefore, two sets of
distances are calculated: pair-wise distance between members
of a mechanistic group (the intra-set distance) and pair-wise

distances between members of different mechanistic groups
(the inter-set distances). To test whether the former are sig-
nificantly larger than the latter, a Mann–Whitney U test is per-
formed (Ott, R.L., Longecker, L. (2001) An Introduction to
Statistical Methods and Data Analysis, 5th ed., ISBN 978-0-
534-25122-2).

The Mann–Whitney U test assumes that the data are inde-
pendent and drawn from distributions with identical shape.
(The distributions can differ in position.) This assumption is
problematic because it is unlikely that the intra-set and inter-set
distance will have distributions of similar shape: the intra-set
distances most likely form a narrow distribution, whereas the
inter-set distances will be more dispersed because some mech-
anisms are more different than others. Say, for instance, that of
the twelve MOAs, ten are very distinct and two are very sim-
ilar according to the calculated profiles. The p-values for the
two similar MOAs calculated using the Mann-Whitney U test
are still very small, as the medians of the intra-set and inter-set
distances are so different. It is, however, impossible to defini-
tively classify a sample in either one of the two similar MOAs.

We chose instead to compare the methods by classification
accuracy because that measure is more relevant for profiling
experiments, which aim to distinguish multiple phenotypes. If
two MOAs appear identical based on their profiles, their pre-
diction accuracies will be around 50%.

Summary of previous comparison results: Perlman
et al. 14 compare the Translation Invariant Similarity Score
(TISS) method, which includes the KS method as its core,
to the means method. The comparison takes only the total-
intensity measurements into account, not the other measure-
ments. The p-values are listed for nine mechanisms of ac-
tion. The KS method has markedly lower p-values for five
of the nine MOAs, and the mean method has markedly lower
p-values for three of the nine MOAs.

Loo et al.15 and Slack et al.18 compare the SVM and GMM
methods, respectively, to TISS. The SVM method using each
of four markers sets separately is compared to TISS using all
markers sets simultaneously. The SVM method appears to
work better overall based on the p-values, but the combining
of the marker sets for TISS makes a conclusive comparison
impossible. The GMM method is compared to TISS using the
same images but different features sets. This makes it difficult
to tell if a change in p-value is caused by a different method
or a different feature set. The GMM method has significantly
lower p-values than TISS for three out of nine MOA; the in-
verse is true for one MOA. The remaining five MOAs have
comparable p-values.

Comparison of core methods by p-value: We computed
areas under the ROC for each of the five profiling methods
(Table S 10). For factor analysis, the p-values are 0.0001 or
below for every MOA. The other four methods yield slightly
higher p-values for compounds that cause protein degradation.
The means method yields higher p-values for actin disruptors.
The GM method yields higher p-values for actin disruptors and
cholesterol-lowering compounds.
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Text S7
Most influential variables
In order to measure of how influential each variable is in dis-
tinguish each MOA from the rest (Table S 5), we first com-
puted per-MOA profiles as element-wise medians of the pro-
files of the wells treated with compounds labeled as having
that MOA. We then rank the variables, for each MOA profile,
by the element-wise minimum distance to any other MOA pro-
file.

Text S8
Number of factors
Why is 50 factors optimal in our experiment when Young et
al.19 use 6 factors? First of all, the number 6, which was sug-
gested by the Kaiser criterion, is a somewhat arbitrary cutoff:
it is simply the threshold where an additional factor would con-
tain less information than an average feature. It is entirely pos-
sible that a few more factors would have led to more discrim-
inative profiles, but in Young et al.’s paper, interpretability of
the factors is important, so it makes sense to choose a relatively
low number of factors.

Even if Young et al. were to choose their number of fac-
tors based on performance in an analytic task (such as classi-
fication), they could not have found more than 36 factors be-
cause they only measured 36 features. In constrast we mea-
sure 453 features. Although there are unquestionably redun-
dancies in our feature set, it seems reasonable to assume that
the rich feature set would allow us to detect additional ef-
fects on cells—effects that are too subtle/complex to be in-
terpretable, but which nevertheless help in classification. It
may also matter that we have an actin stain and a tubulin stain,
and that we therefore are able to measure cellular morphology.
(Young et al. only measured nuclear features.) A number of
factors around 50 is consistent with our experience with train-
ing boosting classifiers for particular phenotypes in a screening
context, where classifiers with 20 rules work well but adding
up to about 50 rules helps5.
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SUPPLEMENTARY DATA
Data S1: pipelines.zip – CellProfiler pipelines for pro-
cessing the images. There are two pipelines, one that computes
illumination-correction functions per plate, and one that ap-
plies the illumination correction functions to images and ana-
lyzes them. The pipelines are provided in both human-readable
and machine-readable format.

Data S2: database.zip – Measurements and metadata in
CSV format, as well as a script for loading them into a MySQL
database, as described (Text S1).

Data S3: reproduce.zip – Input data and source code for
regenerating the figures, tables, and results (Text S3).
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SUPPLEMENTARY FIGURES

Actin disruptors Aurora kinase inhibitors Cholesterol-lowering DNA damage

cytochalasin D, 0.3 µM AZ-A, 1.0 µM simvastatin, 6.0 µM etoposide, 10.0 µM

DNA replication Eg5 inhibitors Epithelial Kinase inhibitors

camptothecin, 0.01 µM AZ-C 0.1 µM AZ-J 1.0 µM alsterpaullone 1.0 µM

Microtubule destabilizer Microtubule stabilizer Protein degradation Protein synthesis

demecolcine 1.0 µM epothilone B, 1.0 µM lactacystin, 10.0 µM emetine, 0.3 µM

Figure S1: Images of one compound-concentration in each of the 12 MOAs spanned by our ground-truth set. Red color shows F-actin, green shows
b-tubulin, and blue shows DNA.
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Figure S2: Histograms of distances between compound-concentrations that have the same MOA and between compound-concentrations that have
different MOA. These distances are between profiles produced by the “means” method; the other methods produced histograms that were not
dramatically different.
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C: Median
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D: Median + MAD
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Figure S3: Confusion matrices for other population statistics.
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C: SVM normal vector
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D: SVM normal vector with recursive feature elimination
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E: Gaussian mixture (mean of 20 models)
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F: Factor analysis (mean of 20 models)
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Figure S4: Confusion matrices for the five profiling methods, showing the number of compound-concentrations that were classified correctly (on the
diagonals) and incorrectly (off the diagonals), the classification accuracies for each MOA (right columns), and overall classification accuracy (number
of correctly classified compound-concentration divided by the total number of compound-concentrations). Panels E and F show average outcomes
over 20 models; dimly colored squares without numbers indicate classification outcomes that occurred less than 0.5 times on average.
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Figure S5: Distributions of classification accuracies for 20 runs of the Gaussian mixture method for each possible choice of the number of mixture
components from 2 to 50.
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Figure S6: The GM method performs similarly whether the model is built from a subsample of control cells, a subsample of non-control (treated)
cells, or a mixture of both.
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A: Means (mean of 20 models)
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B: KS statistics
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C: SVM normal vector
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D: Gaussian mixture
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Figure S7: Confusion matrices for each method, using factor analysis as a preprocessing step.
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B: Non-controls
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C: Both
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Figure S8: The FA method performs similarly whether the model is built from a subsample of control cells, a subsample of non-control (treated)
cells, or a mixture of both.
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D: DNA–pp38–pERK
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Figure S9: Confusion matrices from Loo et al.’s experiment, compiled from information in their Supplementary Data 2 15
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SUPPLEMENTARY TABLES
Table S1: The 453 measurements made by CellProfiler for each cell.
(See the CellProfiler manual for descriptions of each.)

Image feature name

TableNumber
ImageNumber
ObjectNumber
Nuclei Children Cells Count
Nuclei Children Cytoplasm Count
Nuclei AreaShape Area
Nuclei AreaShape Eccentricity
Nuclei AreaShape Solidity
Nuclei AreaShape Extent
Nuclei AreaShape EulerNumber
Nuclei AreaShape Perimeter
Nuclei AreaShape FormFactor
Nuclei AreaShape MajorAxisLength
Nuclei AreaShape MinorAxisLength
Nuclei AreaShape Orientation
Nuclei Zernike 0 0
Nuclei Zernike 1 1
Nuclei Zernike 2 0
Nuclei Zernike 2 2
Nuclei Zernike 3 1
Nuclei Zernike 3 3
Nuclei Zernike 4 0
Nuclei Zernike 4 2
Nuclei Zernike 4 4
Nuclei Zernike 5 1
Nuclei Zernike 5 3
Nuclei Zernike 5 5
Nuclei Zernike 6 0
Nuclei Zernike 6 2
Nuclei Zernike 6 4
Nuclei Zernike 6 6
Nuclei Zernike 7 1
Nuclei Zernike 7 3
Nuclei Zernike 7 5
Nuclei Zernike 7 7
Nuclei Zernike 8 0
Nuclei Zernike 8 2
Nuclei Zernike 8 4
Nuclei Zernike 8 6
Nuclei Zernike 8 8
Nuclei Zernike 9 1
Nuclei Zernike 9 3
Nuclei Zernike 9 5
Nuclei Zernike 9 7
Nuclei Zernike 9 9
Nuclei Intensity IntegratedIntensity CorrDAPI
Nuclei Intensity MeanIntensity CorrDAPI
Nuclei Intensity StdIntensity CorrDAPI
Nuclei Intensity MinIntensity CorrDAPI
Nuclei Intensity MaxIntensity CorrDAPI
Continues...

Table S1 continued

Image feature name

Nuclei Intensity IntegratedIntensityEdge CorrDAPI
Nuclei Intensity MeanIntensityEdge CorrDAPI
Nuclei Intensity StdIntensityEdge CorrDAPI
Nuclei Intensity MinIntensityEdge CorrDAPI
Nuclei Intensity MaxIntensityEdge CorrDAPI
Nuclei Intensity MassDisplacement CorrDAPI
Nuclei Intensity LowerQuartileIntensity CorrDAPI
Nuclei Intensity MedianIntensity CorrDAPI
Nuclei Intensity UpperQuartileIntensity CorrDAPI
Nuclei Intensity IntegratedIntensity CorrActin
Nuclei Intensity MeanIntensity CorrActin
Nuclei Intensity StdIntensity CorrActin
Nuclei Intensity MinIntensity CorrActin
Nuclei Intensity MaxIntensity CorrActin
Nuclei Intensity IntegratedIntensityEdge CorrActin
Nuclei Intensity MeanIntensityEdge CorrActin
Nuclei Intensity StdIntensityEdge CorrActin
Nuclei Intensity MinIntensityEdge CorrActin
Nuclei Intensity MaxIntensityEdge CorrActin
Nuclei Intensity MassDisplacement CorrActin
Nuclei Intensity LowerQuartileIntensity CorrActin
Nuclei Intensity MedianIntensity CorrActin
Nuclei Intensity UpperQuartileIntensity CorrActin
Nuclei Intensity IntegratedIntensity CorrTub
Nuclei Intensity MeanIntensity CorrTub
Nuclei Intensity StdIntensity CorrTub
Nuclei Intensity MinIntensity CorrTub
Nuclei Intensity MaxIntensity CorrTub
Nuclei Intensity IntegratedIntensityEdge CorrTub
Nuclei Intensity MeanIntensityEdge CorrTub
Nuclei Intensity StdIntensityEdge CorrTub
Nuclei Intensity MinIntensityEdge CorrTub
Nuclei Intensity MaxIntensityEdge CorrTub
Nuclei Intensity MassDisplacement CorrTub
Nuclei Intensity LowerQuartileIntensity CorrTub
Nuclei Intensity MedianIntensity CorrTub
Nuclei Intensity UpperQuartileIntensity CorrTub
Nuclei Neighbors NumberOfNeighbors 10
Nuclei Neighbors PercentTouching 10
Nuclei Neighbors FirstClosestXVector 10
Nuclei Neighbors FirstClosestYVector 10
Nuclei Neighbors SecondClosestXVector 10
Nuclei Neighbors SecondClosestYVector 10
Nuclei Neighbors AngleBetweenNeighbors 10
Nuclei Neighbors NumberOfNeighbors 20
Nuclei Neighbors PercentTouching 20
Nuclei Neighbors FirstClosestXVector 20
Nuclei Neighbors FirstClosestYVector 20
Nuclei Neighbors SecondClosestXVector 20
Nuclei Neighbors SecondClosestYVector 20
Nuclei Neighbors AngleBetweenNeighbors 20
Nuclei Texture AngularSecondMoment CorrDAPI 10
Nuclei Texture Contrast CorrDAPI 10
Nuclei Texture Correlation CorrDAPI 10
Continues...
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TableNumber
ImageNumber
ObjectNumber
Nuclei_Children_Cells_Count
Nuclei_Children_Cytoplasm_Count
Nuclei_AreaShape_Area
Nuclei_AreaShape_Eccentricity
Nuclei_AreaShape_Solidity
Nuclei_AreaShape_Extent
Nuclei_AreaShape_EulerNumber
Nuclei_AreaShape_Perimeter
Nuclei_AreaShape_FormFactor
Nuclei_AreaShape_MajorAxisLength
Nuclei_AreaShape_MinorAxisLength
Nuclei_AreaShape_Orientation
Nuclei_Zernike_0_0
Nuclei_Zernike_1_1
Nuclei_Zernike_2_0
Nuclei_Zernike_2_2
Nuclei_Zernike_3_1
Nuclei_Zernike_3_3
Nuclei_Zernike_4_0
Nuclei_Zernike_4_2
Nuclei_Zernike_4_4
Nuclei_Zernike_5_1
Nuclei_Zernike_5_3
Nuclei_Zernike_5_5
Nuclei_Zernike_6_0
Nuclei_Zernike_6_2
Nuclei_Zernike_6_4
Nuclei_Zernike_6_6
Nuclei_Zernike_7_1
Nuclei_Zernike_7_3
Nuclei_Zernike_7_5
Nuclei_Zernike_7_7
Nuclei_Zernike_8_0
Nuclei_Zernike_8_2
Nuclei_Zernike_8_4
Nuclei_Zernike_8_6
Nuclei_Zernike_8_8
Nuclei_Zernike_9_1
Nuclei_Zernike_9_3
Nuclei_Zernike_9_5
Nuclei_Zernike_9_7
Nuclei_Zernike_9_9
Nuclei_Intensity_IntegratedIntensity_CorrDAPI
Nuclei_Intensity_MeanIntensity_CorrDAPI
Nuclei_Intensity_StdIntensity_CorrDAPI
Nuclei_Intensity_MinIntensity_CorrDAPI
Nuclei_Intensity_MaxIntensity_CorrDAPI
Nuclei_Intensity_IntegratedIntensityEdge_CorrDAPI
Nuclei_Intensity_MeanIntensityEdge_CorrDAPI
Nuclei_Intensity_StdIntensityEdge_CorrDAPI
Nuclei_Intensity_MinIntensityEdge_CorrDAPI
Nuclei_Intensity_MaxIntensityEdge_CorrDAPI
Nuclei_Intensity_MassDisplacement_CorrDAPI
Nuclei_Intensity_LowerQuartileIntensity_CorrDAPI
Nuclei_Intensity_MedianIntensity_CorrDAPI
Nuclei_Intensity_UpperQuartileIntensity_CorrDAPI
Nuclei_Intensity_IntegratedIntensity_CorrActin
Nuclei_Intensity_MeanIntensity_CorrActin
Nuclei_Intensity_StdIntensity_CorrActin
Nuclei_Intensity_MinIntensity_CorrActin
Nuclei_Intensity_MaxIntensity_CorrActin
Nuclei_Intensity_IntegratedIntensityEdge_CorrActin
Nuclei_Intensity_MeanIntensityEdge_CorrActin
Nuclei_Intensity_StdIntensityEdge_CorrActin
Nuclei_Intensity_MinIntensityEdge_CorrActin
Nuclei_Intensity_MaxIntensityEdge_CorrActin
Nuclei_Intensity_MassDisplacement_CorrActin
Nuclei_Intensity_LowerQuartileIntensity_CorrActin
Nuclei_Intensity_MedianIntensity_CorrActin
Nuclei_Intensity_UpperQuartileIntensity_CorrActin
Nuclei_Intensity_IntegratedIntensity_CorrTub
Nuclei_Intensity_MeanIntensity_CorrTub
Nuclei_Intensity_StdIntensity_CorrTub
Nuclei_Intensity_MinIntensity_CorrTub
Nuclei_Intensity_MaxIntensity_CorrTub
Nuclei_Intensity_IntegratedIntensityEdge_CorrTub
Nuclei_Intensity_MeanIntensityEdge_CorrTub
Nuclei_Intensity_StdIntensityEdge_CorrTub
Nuclei_Intensity_MinIntensityEdge_CorrTub
Nuclei_Intensity_MaxIntensityEdge_CorrTub
Nuclei_Intensity_MassDisplacement_CorrTub
Nuclei_Intensity_LowerQuartileIntensity_CorrTub
Nuclei_Intensity_MedianIntensity_CorrTub
Nuclei_Intensity_UpperQuartileIntensity_CorrTub
Nuclei_Neighbors_NumberOfNeighbors_10
Nuclei_Neighbors_PercentTouching_10
Nuclei_Neighbors_FirstClosestXVector_10
Nuclei_Neighbors_FirstClosestYVector_10
Nuclei_Neighbors_SecondClosestXVector_10
Nuclei_Neighbors_SecondClosestYVector_10
Nuclei_Neighbors_AngleBetweenNeighbors_10
Nuclei_Neighbors_NumberOfNeighbors_20
Nuclei_Neighbors_PercentTouching_20
Nuclei_Neighbors_FirstClosestXVector_20
Nuclei_Neighbors_FirstClosestYVector_20
Nuclei_Neighbors_SecondClosestXVector_20
Nuclei_Neighbors_SecondClosestYVector_20
Nuclei_Neighbors_AngleBetweenNeighbors_20
Nuclei_Texture_AngularSecondMoment_CorrDAPI_10
Nuclei_Texture_Contrast_CorrDAPI_10
Nuclei_Texture_Correlation_CorrDAPI_10


Table S1 continued

Image feature name

Nuclei Texture Variance CorrDAPI 10
Nuclei Texture InverseDifferenceMoment CorrDAPI 10
Nuclei Texture SumAverage CorrDAPI 10
Nuclei Texture SumVariance CorrDAPI 10
Nuclei Texture SumEntropy CorrDAPI 10
Nuclei Texture Entropy CorrDAPI 10
Nuclei Texture DifferenceVariance CorrDAPI 10
Nuclei Texture DifferenceEntropy CorrDAPI 10
Nuclei Texture InfoMeas1 CorrDAPI 10
Nuclei Texture InfoMeas2 CorrDAPI 10
Nuclei Texture GaborX CorrDAPI 10
Nuclei Texture GaborY CorrDAPI 10
Nuclei Texture AngularSecondMoment CorrActin 10
Nuclei Texture Contrast CorrActin 10
Nuclei Texture Correlation CorrActin 10
Nuclei Texture Variance CorrActin 10
Nuclei Texture InverseDifferenceMoment CorrActin 10
Nuclei Texture SumAverage CorrActin 10
Nuclei Texture SumVariance CorrActin 10
Nuclei Texture SumEntropy CorrActin 10
Nuclei Texture Entropy CorrActin 10
Nuclei Texture DifferenceVariance CorrActin 10
Nuclei Texture DifferenceEntropy CorrActin 10
Nuclei Texture InfoMeas1 CorrActin 10
Nuclei Texture InfoMeas2 CorrActin 10
Nuclei Texture GaborX CorrActin 10
Nuclei Texture GaborY CorrActin 10
Nuclei Texture AngularSecondMoment CorrTub 10
Nuclei Texture Contrast CorrTub 10
Nuclei Texture Correlation CorrTub 10
Nuclei Texture Variance CorrTub 10
Nuclei Texture InverseDifferenceMoment CorrTub 10
Nuclei Texture SumAverage CorrTub 10
Nuclei Texture SumVariance CorrTub 10
Nuclei Texture SumEntropy CorrTub 10
Nuclei Texture Entropy CorrTub 10
Nuclei Texture DifferenceVariance CorrTub 10
Nuclei Texture DifferenceEntropy CorrTub 10
Nuclei Texture InfoMeas1 CorrTub 10
Nuclei Texture InfoMeas2 CorrTub 10
Nuclei Texture GaborX CorrTub 10
Nuclei Texture GaborY CorrTub 10
Nuclei Texture AngularSecondMoment CorrDAPI 3
Nuclei Texture Contrast CorrDAPI 3
Nuclei Texture Correlation CorrDAPI 3
Nuclei Texture Variance CorrDAPI 3
Nuclei Texture InverseDifferenceMoment CorrDAPI 3
Nuclei Texture SumAverage CorrDAPI 3
Nuclei Texture SumVariance CorrDAPI 3
Nuclei Texture SumEntropy CorrDAPI 3
Nuclei Texture Entropy CorrDAPI 3
Nuclei Texture DifferenceVariance CorrDAPI 3
Nuclei Texture DifferenceEntropy CorrDAPI 3
Nuclei Texture InfoMeas1 CorrDAPI 3
Continues...
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Nuclei Texture InfoMeas2 CorrDAPI 3
Nuclei Texture GaborX CorrDAPI 3
Nuclei Texture GaborY CorrDAPI 3
Nuclei Texture AngularSecondMoment CorrActin 3
Nuclei Texture Contrast CorrActin 3
Nuclei Texture Correlation CorrActin 3
Nuclei Texture Variance CorrActin 3
Nuclei Texture InverseDifferenceMoment CorrActin 3
Nuclei Texture SumAverage CorrActin 3
Nuclei Texture SumVariance CorrActin 3
Nuclei Texture SumEntropy CorrActin 3
Nuclei Texture Entropy CorrActin 3
Nuclei Texture DifferenceVariance CorrActin 3
Nuclei Texture DifferenceEntropy CorrActin 3
Nuclei Texture InfoMeas1 CorrActin 3
Nuclei Texture InfoMeas2 CorrActin 3
Nuclei Texture GaborX CorrActin 3
Nuclei Texture GaborY CorrActin 3
Nuclei Texture AngularSecondMoment CorrTub 3
Nuclei Texture Contrast CorrTub 3
Nuclei Texture Correlation CorrTub 3
Nuclei Texture Variance CorrTub 3
Nuclei Texture InverseDifferenceMoment CorrTub 3
Nuclei Texture SumAverage CorrTub 3
Nuclei Texture SumVariance CorrTub 3
Nuclei Texture SumEntropy CorrTub 3
Nuclei Texture Entropy CorrTub 3
Nuclei Texture DifferenceVariance CorrTub 3
Nuclei Texture DifferenceEntropy CorrTub 3
Nuclei Texture InfoMeas1 CorrTub 3
Nuclei Texture InfoMeas2 CorrTub 3
Nuclei Texture GaborX CorrTub 3
Nuclei Texture GaborY CorrTub 3
Cells Parent Nuclei
Cells Children Cytoplasm Count
Cells AreaShape Area
Cells AreaShape Eccentricity
Cells AreaShape Solidity
Cells AreaShape Extent
Cells AreaShape EulerNumber
Cells AreaShape Perimeter
Cells AreaShape FormFactor
Cells AreaShape MajorAxisLength
Cells AreaShape MinorAxisLength
Cells AreaShape Orientation
Cells Zernike 0 0
Cells Zernike 1 1
Cells Zernike 2 0
Cells Zernike 2 2
Cells Zernike 3 1
Cells Zernike 3 3
Cells Zernike 4 0
Cells Zernike 4 2
Cells Zernike 4 4
Continues...
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Nuclei_Texture_Variance_CorrDAPI_10
Nuclei_Texture_InverseDifferenceMoment_CorrDAPI_10
Nuclei_Texture_SumAverage_CorrDAPI_10
Nuclei_Texture_SumVariance_CorrDAPI_10
Nuclei_Texture_SumEntropy_CorrDAPI_10
Nuclei_Texture_Entropy_CorrDAPI_10
Nuclei_Texture_DifferenceVariance_CorrDAPI_10
Nuclei_Texture_DifferenceEntropy_CorrDAPI_10
Nuclei_Texture_InfoMeas1_CorrDAPI_10
Nuclei_Texture_InfoMeas2_CorrDAPI_10
Nuclei_Texture_GaborX_CorrDAPI_10
Nuclei_Texture_GaborY_CorrDAPI_10
Nuclei_Texture_AngularSecondMoment_CorrActin_10
Nuclei_Texture_Contrast_CorrActin_10
Nuclei_Texture_Correlation_CorrActin_10
Nuclei_Texture_Variance_CorrActin_10
Nuclei_Texture_InverseDifferenceMoment_CorrActin_10
Nuclei_Texture_SumAverage_CorrActin_10
Nuclei_Texture_SumVariance_CorrActin_10
Nuclei_Texture_SumEntropy_CorrActin_10
Nuclei_Texture_Entropy_CorrActin_10
Nuclei_Texture_DifferenceVariance_CorrActin_10
Nuclei_Texture_DifferenceEntropy_CorrActin_10
Nuclei_Texture_InfoMeas1_CorrActin_10
Nuclei_Texture_InfoMeas2_CorrActin_10
Nuclei_Texture_GaborX_CorrActin_10
Nuclei_Texture_GaborY_CorrActin_10
Nuclei_Texture_AngularSecondMoment_CorrTub_10
Nuclei_Texture_Contrast_CorrTub_10
Nuclei_Texture_Correlation_CorrTub_10
Nuclei_Texture_Variance_CorrTub_10
Nuclei_Texture_InverseDifferenceMoment_CorrTub_10
Nuclei_Texture_SumAverage_CorrTub_10
Nuclei_Texture_SumVariance_CorrTub_10
Nuclei_Texture_SumEntropy_CorrTub_10
Nuclei_Texture_Entropy_CorrTub_10
Nuclei_Texture_DifferenceVariance_CorrTub_10
Nuclei_Texture_DifferenceEntropy_CorrTub_10
Nuclei_Texture_InfoMeas1_CorrTub_10
Nuclei_Texture_InfoMeas2_CorrTub_10
Nuclei_Texture_GaborX_CorrTub_10
Nuclei_Texture_GaborY_CorrTub_10
Nuclei_Texture_AngularSecondMoment_CorrDAPI_3
Nuclei_Texture_Contrast_CorrDAPI_3
Nuclei_Texture_Correlation_CorrDAPI_3
Nuclei_Texture_Variance_CorrDAPI_3
Nuclei_Texture_InverseDifferenceMoment_CorrDAPI_3
Nuclei_Texture_SumAverage_CorrDAPI_3
Nuclei_Texture_SumVariance_CorrDAPI_3
Nuclei_Texture_SumEntropy_CorrDAPI_3
Nuclei_Texture_Entropy_CorrDAPI_3
Nuclei_Texture_DifferenceVariance_CorrDAPI_3
Nuclei_Texture_DifferenceEntropy_CorrDAPI_3
Nuclei_Texture_InfoMeas1_CorrDAPI_3
Nuclei_Texture_InfoMeas2_CorrDAPI_3
Nuclei_Texture_GaborX_CorrDAPI_3
Nuclei_Texture_GaborY_CorrDAPI_3
Nuclei_Texture_AngularSecondMoment_CorrActin_3
Nuclei_Texture_Contrast_CorrActin_3
Nuclei_Texture_Correlation_CorrActin_3
Nuclei_Texture_Variance_CorrActin_3
Nuclei_Texture_InverseDifferenceMoment_CorrActin_3
Nuclei_Texture_SumAverage_CorrActin_3
Nuclei_Texture_SumVariance_CorrActin_3
Nuclei_Texture_SumEntropy_CorrActin_3
Nuclei_Texture_Entropy_CorrActin_3
Nuclei_Texture_DifferenceVariance_CorrActin_3
Nuclei_Texture_DifferenceEntropy_CorrActin_3
Nuclei_Texture_InfoMeas1_CorrActin_3
Nuclei_Texture_InfoMeas2_CorrActin_3
Nuclei_Texture_GaborX_CorrActin_3
Nuclei_Texture_GaborY_CorrActin_3
Nuclei_Texture_AngularSecondMoment_CorrTub_3
Nuclei_Texture_Contrast_CorrTub_3
Nuclei_Texture_Correlation_CorrTub_3
Nuclei_Texture_Variance_CorrTub_3
Nuclei_Texture_InverseDifferenceMoment_CorrTub_3
Nuclei_Texture_SumAverage_CorrTub_3
Nuclei_Texture_SumVariance_CorrTub_3
Nuclei_Texture_SumEntropy_CorrTub_3
Nuclei_Texture_Entropy_CorrTub_3
Nuclei_Texture_DifferenceVariance_CorrTub_3
Nuclei_Texture_DifferenceEntropy_CorrTub_3
Nuclei_Texture_InfoMeas1_CorrTub_3
Nuclei_Texture_InfoMeas2_CorrTub_3
Nuclei_Texture_GaborX_CorrTub_3
Nuclei_Texture_GaborY_CorrTub_3
Cells_Parent_Nuclei
Cells_Children_Cytoplasm_Count
Cells_AreaShape_Area
Cells_AreaShape_Eccentricity
Cells_AreaShape_Solidity
Cells_AreaShape_Extent
Cells_AreaShape_EulerNumber
Cells_AreaShape_Perimeter
Cells_AreaShape_FormFactor
Cells_AreaShape_MajorAxisLength
Cells_AreaShape_MinorAxisLength
Cells_AreaShape_Orientation
Cells_Zernike_0_0
Cells_Zernike_1_1
Cells_Zernike_2_0
Cells_Zernike_2_2
Cells_Zernike_3_1
Cells_Zernike_3_3
Cells_Zernike_4_0
Cells_Zernike_4_2
Cells_Zernike_4_4


Table S1 continued

Image feature name

Cells Zernike 5 1
Cells Zernike 5 3
Cells Zernike 5 5
Cells Zernike 6 0
Cells Zernike 6 2
Cells Zernike 6 4
Cells Zernike 6 6
Cells Zernike 7 1
Cells Zernike 7 3
Cells Zernike 7 5
Cells Zernike 7 7
Cells Zernike 8 0
Cells Zernike 8 2
Cells Zernike 8 4
Cells Zernike 8 6
Cells Zernike 8 8
Cells Zernike 9 1
Cells Zernike 9 3
Cells Zernike 9 5
Cells Zernike 9 7
Cells Zernike 9 9
Cells Intensity IntegratedIntensity CorrActin
Cells Intensity MeanIntensity CorrActin
Cells Intensity StdIntensity CorrActin
Cells Intensity MinIntensity CorrActin
Cells Intensity MaxIntensity CorrActin
Cells Intensity IntegratedIntensityEdge CorrActin
Cells Intensity MeanIntensityEdge CorrActin
Cells Intensity StdIntensityEdge CorrActin
Cells Intensity MinIntensityEdge CorrActin
Cells Intensity MaxIntensityEdge CorrActin
Cells Intensity MassDisplacement CorrActin
Cells Intensity LowerQuartileIntensity CorrActin
Cells Intensity MedianIntensity CorrActin
Cells Intensity UpperQuartileIntensity CorrActin
Cells Intensity IntegratedIntensity CorrTub
Cells Intensity MeanIntensity CorrTub
Cells Intensity StdIntensity CorrTub
Cells Intensity MinIntensity CorrTub
Cells Intensity MaxIntensity CorrTub
Cells Intensity IntegratedIntensityEdge CorrTub
Cells Intensity MeanIntensityEdge CorrTub
Cells Intensity StdIntensityEdge CorrTub
Cells Intensity MinIntensityEdge CorrTub
Cells Intensity MaxIntensityEdge CorrTub
Cells Intensity MassDisplacement CorrTub
Cells Intensity LowerQuartileIntensity CorrTub
Cells Intensity MedianIntensity CorrTub
Cells Intensity UpperQuartileIntensity CorrTub
Cells Neighbors NumberOfNeighbors 3
Cells Neighbors PercentTouching 3
Cells Neighbors FirstClosestXVector 3
Cells Neighbors FirstClosestYVector 3
Cells Neighbors SecondClosestXVector 3
Continues...
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Image feature name

Cells Neighbors SecondClosestYVector 3
Cells Neighbors AngleBetweenNeighbors 3
Cells Neighbors NumberOfNeighbors 10
Cells Neighbors PercentTouching 10
Cells Neighbors FirstClosestXVector 10
Cells Neighbors FirstClosestYVector 10
Cells Neighbors SecondClosestXVector 10
Cells Neighbors SecondClosestYVector 10
Cells Neighbors AngleBetweenNeighbors 10
Cells Texture AngularSecondMoment CorrActin 10
Cells Texture Contrast CorrActin 10
Cells Texture Correlation CorrActin 10
Cells Texture Variance CorrActin 10
Cells Texture InverseDifferenceMoment CorrActin 10
Cells Texture SumAverage CorrActin 10
Cells Texture SumVariance CorrActin 10
Cells Texture SumEntropy CorrActin 10
Cells Texture Entropy CorrActin 10
Cells Texture DifferenceVariance CorrActin 10
Cells Texture DifferenceEntropy CorrActin 10
Cells Texture InfoMeas1 CorrActin 10
Cells Texture InfoMeas2 CorrActin 10
Cells Texture GaborX CorrActin 10
Cells Texture GaborY CorrActin 10
Cells Texture AngularSecondMoment CorrTub 10
Cells Texture Contrast CorrTub 10
Cells Texture Correlation CorrTub 10
Cells Texture Variance CorrTub 10
Cells Texture InverseDifferenceMoment CorrTub 10
Cells Texture SumAverage CorrTub 10
Cells Texture SumVariance CorrTub 10
Cells Texture SumEntropy CorrTub 10
Cells Texture Entropy CorrTub 10
Cells Texture DifferenceVariance CorrTub 10
Cells Texture DifferenceEntropy CorrTub 10
Cells Texture InfoMeas1 CorrTub 10
Cells Texture InfoMeas2 CorrTub 10
Cells Texture GaborX CorrTub 10
Cells Texture GaborY CorrTub 10
Cells Texture AngularSecondMoment CorrActin 3
Cells Texture Contrast CorrActin 3
Cells Texture Correlation CorrActin 3
Cells Texture Variance CorrActin 3
Cells Texture InverseDifferenceMoment CorrActin 3
Cells Texture SumAverage CorrActin 3
Cells Texture SumVariance CorrActin 3
Cells Texture SumEntropy CorrActin 3
Cells Texture Entropy CorrActin 3
Cells Texture DifferenceVariance CorrActin 3
Cells Texture DifferenceEntropy CorrActin 3
Cells Texture InfoMeas1 CorrActin 3
Cells Texture InfoMeas2 CorrActin 3
Cells Texture GaborX CorrActin 3
Cells Texture GaborY CorrActin 3
Continues...
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Cells_Zernike_5_1
Cells_Zernike_5_3
Cells_Zernike_5_5
Cells_Zernike_6_0
Cells_Zernike_6_2
Cells_Zernike_6_4
Cells_Zernike_6_6
Cells_Zernike_7_1
Cells_Zernike_7_3
Cells_Zernike_7_5
Cells_Zernike_7_7
Cells_Zernike_8_0
Cells_Zernike_8_2
Cells_Zernike_8_4
Cells_Zernike_8_6
Cells_Zernike_8_8
Cells_Zernike_9_1
Cells_Zernike_9_3
Cells_Zernike_9_5
Cells_Zernike_9_7
Cells_Zernike_9_9
Cells_Intensity_IntegratedIntensity_CorrActin
Cells_Intensity_MeanIntensity_CorrActin
Cells_Intensity_StdIntensity_CorrActin
Cells_Intensity_MinIntensity_CorrActin
Cells_Intensity_MaxIntensity_CorrActin
Cells_Intensity_IntegratedIntensityEdge_CorrActin
Cells_Intensity_MeanIntensityEdge_CorrActin
Cells_Intensity_StdIntensityEdge_CorrActin
Cells_Intensity_MinIntensityEdge_CorrActin
Cells_Intensity_MaxIntensityEdge_CorrActin
Cells_Intensity_MassDisplacement_CorrActin
Cells_Intensity_LowerQuartileIntensity_CorrActin
Cells_Intensity_MedianIntensity_CorrActin
Cells_Intensity_UpperQuartileIntensity_CorrActin
Cells_Intensity_IntegratedIntensity_CorrTub
Cells_Intensity_MeanIntensity_CorrTub
Cells_Intensity_StdIntensity_CorrTub
Cells_Intensity_MinIntensity_CorrTub
Cells_Intensity_MaxIntensity_CorrTub
Cells_Intensity_IntegratedIntensityEdge_CorrTub
Cells_Intensity_MeanIntensityEdge_CorrTub
Cells_Intensity_StdIntensityEdge_CorrTub
Cells_Intensity_MinIntensityEdge_CorrTub
Cells_Intensity_MaxIntensityEdge_CorrTub
Cells_Intensity_MassDisplacement_CorrTub
Cells_Intensity_LowerQuartileIntensity_CorrTub
Cells_Intensity_MedianIntensity_CorrTub
Cells_Intensity_UpperQuartileIntensity_CorrTub
Cells_Neighbors_NumberOfNeighbors_3
Cells_Neighbors_PercentTouching_3
Cells_Neighbors_FirstClosestXVector_3
Cells_Neighbors_FirstClosestYVector_3
Cells_Neighbors_SecondClosestXVector_3
Cells_Neighbors_SecondClosestYVector_3
Cells_Neighbors_AngleBetweenNeighbors_3
Cells_Neighbors_NumberOfNeighbors_10
Cells_Neighbors_PercentTouching_10
Cells_Neighbors_FirstClosestXVector_10
Cells_Neighbors_FirstClosestYVector_10
Cells_Neighbors_SecondClosestXVector_10
Cells_Neighbors_SecondClosestYVector_10
Cells_Neighbors_AngleBetweenNeighbors_10
Cells_Texture_AngularSecondMoment_CorrActin_10
Cells_Texture_Contrast_CorrActin_10
Cells_Texture_Correlation_CorrActin_10
Cells_Texture_Variance_CorrActin_10
Cells_Texture_InverseDifferenceMoment_CorrActin_10
Cells_Texture_SumAverage_CorrActin_10
Cells_Texture_SumVariance_CorrActin_10
Cells_Texture_SumEntropy_CorrActin_10
Cells_Texture_Entropy_CorrActin_10
Cells_Texture_DifferenceVariance_CorrActin_10
Cells_Texture_DifferenceEntropy_CorrActin_10
Cells_Texture_InfoMeas1_CorrActin_10
Cells_Texture_InfoMeas2_CorrActin_10
Cells_Texture_GaborX_CorrActin_10
Cells_Texture_GaborY_CorrActin_10
Cells_Texture_AngularSecondMoment_CorrTub_10
Cells_Texture_Contrast_CorrTub_10
Cells_Texture_Correlation_CorrTub_10
Cells_Texture_Variance_CorrTub_10
Cells_Texture_InverseDifferenceMoment_CorrTub_10
Cells_Texture_SumAverage_CorrTub_10
Cells_Texture_SumVariance_CorrTub_10
Cells_Texture_SumEntropy_CorrTub_10
Cells_Texture_Entropy_CorrTub_10
Cells_Texture_DifferenceVariance_CorrTub_10
Cells_Texture_DifferenceEntropy_CorrTub_10
Cells_Texture_InfoMeas1_CorrTub_10
Cells_Texture_InfoMeas2_CorrTub_10
Cells_Texture_GaborX_CorrTub_10
Cells_Texture_GaborY_CorrTub_10
Cells_Texture_AngularSecondMoment_CorrActin_3
Cells_Texture_Contrast_CorrActin_3
Cells_Texture_Correlation_CorrActin_3
Cells_Texture_Variance_CorrActin_3
Cells_Texture_InverseDifferenceMoment_CorrActin_3
Cells_Texture_SumAverage_CorrActin_3
Cells_Texture_SumVariance_CorrActin_3
Cells_Texture_SumEntropy_CorrActin_3
Cells_Texture_Entropy_CorrActin_3
Cells_Texture_DifferenceVariance_CorrActin_3
Cells_Texture_DifferenceEntropy_CorrActin_3
Cells_Texture_InfoMeas1_CorrActin_3
Cells_Texture_InfoMeas2_CorrActin_3
Cells_Texture_GaborX_CorrActin_3
Cells_Texture_GaborY_CorrActin_3
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Cells Texture AngularSecondMoment CorrTub 3
Cells Texture Contrast CorrTub 3
Cells Texture Correlation CorrTub 3
Cells Texture Variance CorrTub 3
Cells Texture InverseDifferenceMoment CorrTub 3
Cells Texture SumAverage CorrTub 3
Cells Texture SumVariance CorrTub 3
Cells Texture SumEntropy CorrTub 3
Cells Texture Entropy CorrTub 3
Cells Texture DifferenceVariance CorrTub 3
Cells Texture DifferenceEntropy CorrTub 3
Cells Texture InfoMeas1 CorrTub 3
Cells Texture InfoMeas2 CorrTub 3
Cells Texture GaborX CorrTub 3
Cells Texture GaborY CorrTub 3
Cytoplasm Parent Cells
Cytoplasm Parent Nuclei
Cytoplasm AreaShape Area
Cytoplasm AreaShape Eccentricity
Cytoplasm AreaShape Solidity
Cytoplasm AreaShape Extent
Cytoplasm AreaShape EulerNumber
Cytoplasm AreaShape Perimeter
Cytoplasm AreaShape FormFactor
Cytoplasm AreaShape MajorAxisLength
Cytoplasm AreaShape MinorAxisLength
Cytoplasm AreaShape Orientation
Cytoplasm Zernike 0 0
Cytoplasm Zernike 1 1
Cytoplasm Zernike 2 0
Cytoplasm Zernike 2 2
Cytoplasm Zernike 3 1
Cytoplasm Zernike 3 3
Cytoplasm Zernike 4 0
Cytoplasm Zernike 4 2
Cytoplasm Zernike 4 4
Cytoplasm Zernike 5 1
Cytoplasm Zernike 5 3
Cytoplasm Zernike 5 5
Cytoplasm Zernike 6 0
Cytoplasm Zernike 6 2
Cytoplasm Zernike 6 4
Cytoplasm Zernike 6 6
Cytoplasm Zernike 7 1
Cytoplasm Zernike 7 3
Cytoplasm Zernike 7 5
Cytoplasm Zernike 7 7
Cytoplasm Zernike 8 0
Cytoplasm Zernike 8 2
Cytoplasm Zernike 8 4
Cytoplasm Zernike 8 6
Cytoplasm Zernike 8 8
Cytoplasm Zernike 9 1
Cytoplasm Zernike 9 3
Continues...
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Cytoplasm Zernike 9 5
Cytoplasm Zernike 9 7
Cytoplasm Zernike 9 9
Cytoplasm Intensity IntegratedIntensity CorrActin
Cytoplasm Intensity MeanIntensity CorrActin
Cytoplasm Intensity StdIntensity CorrActin
Cytoplasm Intensity MinIntensity CorrActin
Cytoplasm Intensity MaxIntensity CorrActin
Cytoplasm Intensity IntegratedIntensityEdge CorrActin
Cytoplasm Intensity MeanIntensityEdge CorrActin
Cytoplasm Intensity StdIntensityEdge CorrActin
Cytoplasm Intensity MinIntensityEdge CorrActin
Cytoplasm Intensity MaxIntensityEdge CorrActin
Cytoplasm Intensity MassDisplacement CorrActin
Cytoplasm Intensity LowerQuartileIntensity CorrActin
Cytoplasm Intensity MedianIntensity CorrActin
Cytoplasm Intensity UpperQuartileIntensity CorrActin
Cytoplasm Intensity IntegratedIntensity CorrTub
Cytoplasm Intensity MeanIntensity CorrTub
Cytoplasm Intensity StdIntensity CorrTub
Cytoplasm Intensity MinIntensity CorrTub
Cytoplasm Intensity MaxIntensity CorrTub
Cytoplasm Intensity IntegratedIntensityEdge CorrTub
Cytoplasm Intensity MeanIntensityEdge CorrTub
Cytoplasm Intensity StdIntensityEdge CorrTub
Cytoplasm Intensity MinIntensityEdge CorrTub
Cytoplasm Intensity MaxIntensityEdge CorrTub
Cytoplasm Intensity MassDisplacement CorrTub
Cytoplasm Intensity LowerQuartileIntensity CorrTub
Cytoplasm Intensity MedianIntensity CorrTub
Cytoplasm Intensity UpperQuartileIntensity CorrTub
Cytoplasm Texture AngularSecondMoment CorrActin 10
Cytoplasm Texture Contrast CorrActin 10
Cytoplasm Texture Correlation CorrActin 10
Cytoplasm Texture Variance CorrActin 10
Cytoplasm Texture InverseDifferenceMoment CorrActin 10
Cytoplasm Texture SumAverage CorrActin 10
Cytoplasm Texture SumVariance CorrActin 10
Cytoplasm Texture SumEntropy CorrActin 10
Cytoplasm Texture Entropy CorrActin 10
Cytoplasm Texture DifferenceVariance CorrActin 10
Cytoplasm Texture DifferenceEntropy CorrActin 10
Cytoplasm Texture InfoMeas1 CorrActin 10
Cytoplasm Texture InfoMeas2 CorrActin 10
Cytoplasm Texture GaborX CorrActin 10
Cytoplasm Texture GaborY CorrActin 10
Cytoplasm Texture AngularSecondMoment CorrTub 10
Cytoplasm Texture Contrast CorrTub 10
Cytoplasm Texture Correlation CorrTub 10
Cytoplasm Texture Variance CorrTub 10
Cytoplasm Texture InverseDifferenceMoment CorrTub 10
Cytoplasm Texture SumAverage CorrTub 10
Cytoplasm Texture SumVariance CorrTub 10
Cytoplasm Texture SumEntropy CorrTub 10
Continues...
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Cells_Texture_AngularSecondMoment_CorrTub_3
Cells_Texture_Contrast_CorrTub_3
Cells_Texture_Correlation_CorrTub_3
Cells_Texture_Variance_CorrTub_3
Cells_Texture_InverseDifferenceMoment_CorrTub_3
Cells_Texture_SumAverage_CorrTub_3
Cells_Texture_SumVariance_CorrTub_3
Cells_Texture_SumEntropy_CorrTub_3
Cells_Texture_Entropy_CorrTub_3
Cells_Texture_DifferenceVariance_CorrTub_3
Cells_Texture_DifferenceEntropy_CorrTub_3
Cells_Texture_InfoMeas1_CorrTub_3
Cells_Texture_InfoMeas2_CorrTub_3
Cells_Texture_GaborX_CorrTub_3
Cells_Texture_GaborY_CorrTub_3
Cytoplasm_Parent_Cells
Cytoplasm_Parent_Nuclei
Cytoplasm_AreaShape_Area
Cytoplasm_AreaShape_Eccentricity
Cytoplasm_AreaShape_Solidity
Cytoplasm_AreaShape_Extent
Cytoplasm_AreaShape_EulerNumber
Cytoplasm_AreaShape_Perimeter
Cytoplasm_AreaShape_FormFactor
Cytoplasm_AreaShape_MajorAxisLength
Cytoplasm_AreaShape_MinorAxisLength
Cytoplasm_AreaShape_Orientation
Cytoplasm_Zernike_0_0
Cytoplasm_Zernike_1_1
Cytoplasm_Zernike_2_0
Cytoplasm_Zernike_2_2
Cytoplasm_Zernike_3_1
Cytoplasm_Zernike_3_3
Cytoplasm_Zernike_4_0
Cytoplasm_Zernike_4_2
Cytoplasm_Zernike_4_4
Cytoplasm_Zernike_5_1
Cytoplasm_Zernike_5_3
Cytoplasm_Zernike_5_5
Cytoplasm_Zernike_6_0
Cytoplasm_Zernike_6_2
Cytoplasm_Zernike_6_4
Cytoplasm_Zernike_6_6
Cytoplasm_Zernike_7_1
Cytoplasm_Zernike_7_3
Cytoplasm_Zernike_7_5
Cytoplasm_Zernike_7_7
Cytoplasm_Zernike_8_0
Cytoplasm_Zernike_8_2
Cytoplasm_Zernike_8_4
Cytoplasm_Zernike_8_6
Cytoplasm_Zernike_8_8
Cytoplasm_Zernike_9_1
Cytoplasm_Zernike_9_3
Cytoplasm_Zernike_9_5
Cytoplasm_Zernike_9_7
Cytoplasm_Zernike_9_9
Cytoplasm_Intensity_IntegratedIntensity_CorrActin
Cytoplasm_Intensity_MeanIntensity_CorrActin
Cytoplasm_Intensity_StdIntensity_CorrActin
Cytoplasm_Intensity_MinIntensity_CorrActin
Cytoplasm_Intensity_MaxIntensity_CorrActin
Cytoplasm_Intensity_IntegratedIntensityEdge_CorrActin
Cytoplasm_Intensity_MeanIntensityEdge_CorrActin
Cytoplasm_Intensity_StdIntensityEdge_CorrActin
Cytoplasm_Intensity_MinIntensityEdge_CorrActin
Cytoplasm_Intensity_MaxIntensityEdge_CorrActin
Cytoplasm_Intensity_MassDisplacement_CorrActin
Cytoplasm_Intensity_LowerQuartileIntensity_CorrActin
Cytoplasm_Intensity_MedianIntensity_CorrActin
Cytoplasm_Intensity_UpperQuartileIntensity_CorrActin
Cytoplasm_Intensity_IntegratedIntensity_CorrTub
Cytoplasm_Intensity_MeanIntensity_CorrTub
Cytoplasm_Intensity_StdIntensity_CorrTub
Cytoplasm_Intensity_MinIntensity_CorrTub
Cytoplasm_Intensity_MaxIntensity_CorrTub
Cytoplasm_Intensity_IntegratedIntensityEdge_CorrTub
Cytoplasm_Intensity_MeanIntensityEdge_CorrTub
Cytoplasm_Intensity_StdIntensityEdge_CorrTub
Cytoplasm_Intensity_MinIntensityEdge_CorrTub
Cytoplasm_Intensity_MaxIntensityEdge_CorrTub
Cytoplasm_Intensity_MassDisplacement_CorrTub
Cytoplasm_Intensity_LowerQuartileIntensity_CorrTub
Cytoplasm_Intensity_MedianIntensity_CorrTub
Cytoplasm_Intensity_UpperQuartileIntensity_CorrTub
Cytoplasm_Texture_AngularSecondMoment_CorrActin_10
Cytoplasm_Texture_Contrast_CorrActin_10
Cytoplasm_Texture_Correlation_CorrActin_10
Cytoplasm_Texture_Variance_CorrActin_10
Cytoplasm_Texture_InverseDifferenceMoment_CorrActin_10
Cytoplasm_Texture_SumAverage_CorrActin_10
Cytoplasm_Texture_SumVariance_CorrActin_10
Cytoplasm_Texture_SumEntropy_CorrActin_10
Cytoplasm_Texture_Entropy_CorrActin_10
Cytoplasm_Texture_DifferenceVariance_CorrActin_10
Cytoplasm_Texture_DifferenceEntropy_CorrActin_10
Cytoplasm_Texture_InfoMeas1_CorrActin_10
Cytoplasm_Texture_InfoMeas2_CorrActin_10
Cytoplasm_Texture_GaborX_CorrActin_10
Cytoplasm_Texture_GaborY_CorrActin_10
Cytoplasm_Texture_AngularSecondMoment_CorrTub_10
Cytoplasm_Texture_Contrast_CorrTub_10
Cytoplasm_Texture_Correlation_CorrTub_10
Cytoplasm_Texture_Variance_CorrTub_10
Cytoplasm_Texture_InverseDifferenceMoment_CorrTub_10
Cytoplasm_Texture_SumAverage_CorrTub_10
Cytoplasm_Texture_SumVariance_CorrTub_10
Cytoplasm_Texture_SumEntropy_CorrTub_10


Table S1 continued

Image feature name

Cytoplasm Texture Entropy CorrTub 10
Cytoplasm Texture DifferenceVariance CorrTub 10
Cytoplasm Texture DifferenceEntropy CorrTub 10
Cytoplasm Texture InfoMeas1 CorrTub 10
Cytoplasm Texture InfoMeas2 CorrTub 10
Cytoplasm Texture GaborX CorrTub 10
Cytoplasm Texture GaborY CorrTub 10
Cytoplasm Texture AngularSecondMoment CorrActin 3
Cytoplasm Texture Contrast CorrActin 3
Cytoplasm Texture Correlation CorrActin 3
Cytoplasm Texture Variance CorrActin 3
Cytoplasm Texture InverseDifferenceMoment CorrActin 3
Cytoplasm Texture SumAverage CorrActin 3
Cytoplasm Texture SumVariance CorrActin 3
Cytoplasm Texture SumEntropy CorrActin 3
Cytoplasm Texture Entropy CorrActin 3
Cytoplasm Texture DifferenceVariance CorrActin 3
Cytoplasm Texture DifferenceEntropy CorrActin 3
Cytoplasm Texture InfoMeas1 CorrActin 3
Cytoplasm Texture InfoMeas2 CorrActin 3
Cytoplasm Texture GaborX CorrActin 3
Cytoplasm Texture GaborY CorrActin 3
Cytoplasm Texture AngularSecondMoment CorrTub 3
Cytoplasm Texture Contrast CorrTub 3
Cytoplasm Texture Correlation CorrTub 3
Cytoplasm Texture Variance CorrTub 3
Cytoplasm Texture InverseDifferenceMoment CorrTub 3
Cytoplasm Texture SumAverage CorrTub 3
Cytoplasm Texture SumVariance CorrTub 3
Cytoplasm Texture SumEntropy CorrTub 3
Cytoplasm Texture Entropy CorrTub 3
Cytoplasm Texture DifferenceVariance CorrTub 3
Cytoplasm Texture DifferenceEntropy CorrTub 3
Cytoplasm Texture InfoMeas1 CorrTub 3
Cytoplasm Texture InfoMeas2 CorrTub 3
Cytoplasm Texture GaborX CorrTub 3
Cytoplasm Texture GaborY CorrTub 3
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Cytoplasm_Texture_Entropy_CorrTub_10
Cytoplasm_Texture_DifferenceVariance_CorrTub_10
Cytoplasm_Texture_DifferenceEntropy_CorrTub_10
Cytoplasm_Texture_InfoMeas1_CorrTub_10
Cytoplasm_Texture_InfoMeas2_CorrTub_10
Cytoplasm_Texture_GaborX_CorrTub_10
Cytoplasm_Texture_GaborY_CorrTub_10
Cytoplasm_Texture_AngularSecondMoment_CorrActin_3
Cytoplasm_Texture_Contrast_CorrActin_3
Cytoplasm_Texture_Correlation_CorrActin_3
Cytoplasm_Texture_Variance_CorrActin_3
Cytoplasm_Texture_InverseDifferenceMoment_CorrActin_3
Cytoplasm_Texture_SumAverage_CorrActin_3
Cytoplasm_Texture_SumVariance_CorrActin_3
Cytoplasm_Texture_SumEntropy_CorrActin_3
Cytoplasm_Texture_Entropy_CorrActin_3
Cytoplasm_Texture_DifferenceVariance_CorrActin_3
Cytoplasm_Texture_DifferenceEntropy_CorrActin_3
Cytoplasm_Texture_InfoMeas1_CorrActin_3
Cytoplasm_Texture_InfoMeas2_CorrActin_3
Cytoplasm_Texture_GaborX_CorrActin_3
Cytoplasm_Texture_GaborY_CorrActin_3
Cytoplasm_Texture_AngularSecondMoment_CorrTub_3
Cytoplasm_Texture_Contrast_CorrTub_3
Cytoplasm_Texture_Correlation_CorrTub_3
Cytoplasm_Texture_Variance_CorrTub_3
Cytoplasm_Texture_InverseDifferenceMoment_CorrTub_3
Cytoplasm_Texture_SumAverage_CorrTub_3
Cytoplasm_Texture_SumVariance_CorrTub_3
Cytoplasm_Texture_SumEntropy_CorrTub_3
Cytoplasm_Texture_Entropy_CorrTub_3
Cytoplasm_Texture_DifferenceVariance_CorrTub_3
Cytoplasm_Texture_DifferenceEntropy_CorrTub_3
Cytoplasm_Texture_InfoMeas1_CorrTub_3
Cytoplasm_Texture_InfoMeas2_CorrTub_3
Cytoplasm_Texture_GaborX_CorrTub_3
Cytoplasm_Texture_GaborY_CorrTub_3


Table S2: The ground-truth set used for comparing profiling algorithms

Mechanism of action Compound Concentrations [µM]

Actin disruptors cytochalasin B 10.0, 30.0
cytochalasin D 0.3
latrunculin B 1.0, 3.0

Aurora kinase inhibitors AZ-A 0.1, 0.3, 1.0, 3.0, 10.0, 30.0
AZ258 0.1, 0.3, 1.0
AZ841 0.1, 0.3, 1.0

Cholesterol-lowering mevinolin/lovastatin 1.5, 5.0, 15.0
simvastatin 2.0, 6.0, 20.0

DNA damage chlorambucil 10.0
cisplatin 10.0
etoposide 1.0, 3.0, 10.0
mitomycin C 0.1, 0.3, 1.0, 3.0

DNA replication camptothecin 0.003, 0.01, 0.03
floxuridine 10.0, 30.0
methotrexate 10.0
mitoxantrone 0.003, 0.01

Eg5 inhibitors AZ-C 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0
AZ138 0.03, 0.1, 0.3, 1.0, 3.0

Epithelial AZ-J 1.0, 3.0, 10.0
AZ-U 1.0, 3.0, 10.0
PP-2 3.0, 10.0

Kinase inhibitors PD-169316 3.0, 10.0
alsterpaullone 1.0, 3.0
bryostatin 0.3

Microtubule destabilizers colchicine 0.03
demecolcine 0.3, 1.0, 3.0, 10.0
nocodazole 1.0, 3.0
vincristine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0

Microtubule stabilizers docetaxel 0.03, 0.1, 0.3
epothilone B 0.1, 0.3, 1.0
taxol 0.3, 1.0, 3.0

Protein degradation ALLN 3.0, 100.0
MG-132 0.1, 3.0
lactacystin 10.0
proteasome inhibitor I 0.1, 3.0

Protein synthesis anisomycin 0.3, 1.0
cyclohexamide 5.0, 15.0, 50.0
emetine 0.1, 0.3, 1.0
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Table S3: The compounds and concentrations with which cells were treated

Compound name Concentrations [µM] Structure

3,3’-diaminobenzidine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

5-fluorouracil 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

AG-1478 0.003, 0.006, 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 0.3,
0.6, 1.0, 2.0, 3.0, 6.0, 10.0, 20.0

ALLN 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0, 10000.0

AZ-A 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)

AZ-B 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)

AZ-C 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0 (not disclosed)
Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

AZ-D (AZ841) 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

AZ-E (AZ258) 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

AZ-F (AZ701) 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

AZ-G (AZ235) 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

AZ-H 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)

AZ-I 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)

AZ-J 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 (not disclosed)

AZ-K 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 (not disclosed)

AZ-L 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)

AZ-M 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)
Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

AZ-N 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 (not disclosed)

AZ-O 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)

AZ-P (AZ970) 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

AZ-Q (AZ138) 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

AZ-U 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)

Cdk1 inhibitor III 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

Cdk1/2 inhibitor (NU6102) 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

H-7 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0

ICI-182,780 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

LY-294002 0.0006, 0.002, 0.006, 0.02, 0.06, 0.2, 0.6, 2.0

MG-132 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

PD-150606 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0

PD-169316 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

PD-98059 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

PP-2 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

SB-202190 0.006, 0.02, 0.06, 0.2, 0.6, 2.0, 6.0, 20.0

SB-203580 0.003, 0.006, 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 0.3,
0.6, 1.0, 2.0, 3.0, 6.0, 10.0, 20.0

SP-600125 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0, 10000.0

TKK 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 (not disclosed)

UNKNOWN 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 (not disclosed)

UO-126 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

Y-27632 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

acyclovir 0.0015, 0.005, 0.015, 0.05, 0.15, 0.5, 1.5, 5.0

adenine arabinofuranoside 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0 (not disclosed)

aloisine A 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

alsterpaullone 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

anisomycin 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

aphidicolin 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

arabinofuranosylcytosine 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

atropine 0.0015, 0.005, 0.015, 0.05, 0.15, 0.5, 1.5, 5.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

bleomycin 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0, 10000.0

bohemine 0.003, 0.006, 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 0.3,
0.6, 1.0, 2.0, 3.0, 6.0, 10.0, 20.0

brefeldin A 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

bryostatin 6e-05, 0.0002, 0.0006, 0.002, 0.003, 0.006, 0.01,
0.02, 0.03, 0.06, 0.1, 0.2, 0.3, 1.0, 3.0, 10.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

calpain inhibitor 2 (ALLM) 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0

calpeptin 0.006, 0.015, 0.02, 0.05, 0.06, 0.15, 0.2, 0.5, 0.6,
1.5, 2.0, 5.0, 6.0, 15.0, 20.0, 50.0

camptothecin 0.0015, 0.003, 0.005, 0.01, 0.015, 0.03, 0.05, 0.1,
0.15, 0.3, 0.5, 1.0, 1.5, 3.0, 5.0, 10.0

carboplatin 0.006, 0.02, 0.06, 0.2, 0.6, 2.0, 6.0, 20.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

caspase inhibitor 1 (ZVAD) 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0

cathepsin inhibitor I 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

chlorambucil 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

chloramphenicol 0.006, 0.02, 0.06, 0.2, 0.6, 2.0, 6.0, 20.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

cisplatin 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

colchicine 1e-05, 3e-05, 0.0001, 0.0003, 0.001, 0.003, 0.01,
0.03, 0.1, 0.3, 1.0, 3.0

cyclohexamide 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0

cyclophosphamide 0.0015, 0.003, 0.005, 0.01, 0.015, 0.03, 0.05, 0.1,
0.15, 0.3, 0.5, 1.0, 1.5, 3.0, 5.0, 10.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

cytochalasin B 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

cytochalasin D 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 10000.0

demecolcine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

deoxymannojirimycin 0.3, 1.0, 3.0, 10.0, 30.0, 100.0, 300.0, 1000.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

deoxynojirimycin 0.3, 1.0, 3.0, 10.0, 30.0, 100.0, 300.0, 1000.0

docetaxel 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0

doxorubicin 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0,
10.0

emetine 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

epothilone B 3e-05, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03,
0.1, 0.3, 1.0, 3.0

etoposide 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

filipin 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

floxuridine 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

forskolin 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

genistein 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0, 10000.0

herbimycin A 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

hydroxyurea 0.3, 1.0, 3.0, 10.0, 30.0, 100.0, 300.0, 1000.0,
10000.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

indirubin monoxime 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

jasplakinolide 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0

lactacystin 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 10000.0

latrunculin B 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

leupeptin 0.006, 0.015, 0.02, 0.05, 0.06, 0.15, 0.2, 0.5, 0.6,
1.5, 2.0, 5.0, 6.0, 15.0, 20.0, 50.0

methotrexate 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 10000.0

methoxylamine 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0

mevinolin/lovastatin 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

mitomycin C 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

mitoxantrone 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

monastrol 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0

neomycin 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

nocodazole 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

nystatin 0.003, 0.006, 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 0.3,
0.6, 1.0, 2.0, 3.0, 6.0, 10.0, 20.0

okadaic acid 6e-05, 0.0002, 0.0006, 0.002, 0.006, 0.02, 0.06,
0.2

olomoucine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

Continues on the next page

40



Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

podophyllotoxin 3e-06, 1e-05, 3e-05, 0.0001, 0.0003, 0.001, 0.003,
0.01

proteasome inhibitor I 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

puromycin 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0

quercetin 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

raloxifene 0.0015, 0.005, 0.015, 0.05, 0.15, 0.5, 1.5, 5.0

rapamycin 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 10000.0

roscovitine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0

simvastatin 0.006, 0.02, 0.06, 0.2, 0.6, 2.0, 6.0, 20.0

Continues on the next page

42



Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

sodium butyrate 0.083, 0.25, 0.83, 2.5, 8.3, 25.0, 83.0, 250.0

sodium fluoride 0.15, 0.5, 1.5, 5.0, 15.0, 50.0, 150.0, 500.0,
10000.0

staurosporine 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0

taurocholate 0.0083, 0.025, 0.083, 0.25, 0.83, 2.5, 8.3, 25.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

taxol 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0

temozolomide 0.006, 0.02, 0.06, 0.2, 0.6, 2.0, 6.0, 20.0

trichostatin 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0,
10000.0

tunicamycin 0.015, 0.05, 0.15, 0.5, 1.5, 5.0, 15.0, 50.0

Continues on the next page
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Table S3: continued from the previous page

Compound name Concentrations [µM] Structure

valproic acid 0.15, 0.5, 1.5, 5.0, 15.0, 50.0, 150.0, 500.0

vinblastine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 10000.0

vincristine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0
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Table S4: Sizes of the phenotypic subpopulations visible to the eye in four compounds in different mechanistic classes, based on inspection of three
fields of view in each of two replicate samples for each compound.

Prevalence of phenotype [%]

Mechanism Compound
Concen-

tration
[µM]

Mitotic Monoaster
Frag-

mented
nucleus

Diffuse
tubulin

Control
Large cell,

large
nucleus

Large
cell,

multiple
nuclei

Large
nucleus,
multiple

micronuclei
Microtubule stabilizer taxol 1.0 27 3 0 0 0 0 2 24
Microtubule destabilizers demecolcine 1.0 44 0 27 16 12 0 0 0
Aurora kinase inhibitors AZ-A 1.0 1 0 3 0 11 35 50 0
Eg5 inhibitors AZ-C 0.1 13 13 7 9 11 4 2 4

Table S5: The 15 most important image features for distinguishing each mechanism of action using the means method.

Mechanism of action Rank Score Image feature
Actin disruptors 1 0.281215 Cytoplasm Texture GaborY CorrActin 3

2 0.267669 Cytoplasm Texture GaborX CorrActin 3
3 0.208613 Cells Texture GaborY CorrActin 3
4 0.187357 Cells Texture GaborX CorrActin 3
5 0.167390 Nuclei Texture SumVariance CorrDAPI 3
6 0.159650 Cytoplasm Intensity UpperQuartileIntensity CorrTub
7 0.156146 Cells Intensity MedianIntensity CorrTub
8 0.153290 Nuclei Texture Variance CorrDAPI 3
9 0.152532 Nuclei Texture GaborY CorrActin 3

10 0.147827 Nuclei Texture SumVariance CorrDAPI 10
11 0.138384 Nuclei Texture GaborX CorrActin 3
12 0.124821 Cytoplasm Intensity StdIntensity CorrTub
13 0.114793 Nuclei Texture SumEntropy CorrDAPI 10
14 0.113721 Nuclei Intensity LowerQuartileIntensity CorrTub
15 0.104418 Cytoplasm Intensity MeanIntensity CorrTub

Aurora kinase inhibitors 1 0.179038 Cells Intensity IntegratedIntensityEdge CorrTub
2 0.164493 Cells Intensity IntegratedIntensity CorrTub
3 0.152114 Cytoplasm Intensity IntegratedIntensity CorrTub
4 0.119348 Nuclei Texture DifferenceEntropy CorrDAPI 10
5 0.097981 Cytoplasm Intensity IntegratedIntensityEdge CorrTub
6 0.096588 Cytoplasm AreaShape Area
7 0.088599 Nuclei Texture DifferenceVariance CorrDAPI 10
8 0.087314 Nuclei Intensity MeanIntensityEdge CorrActin
9 0.074868 Cells AreaShape Area

10 0.070440 Nuclei Texture GaborY CorrTub 3
11 0.068690 Cytoplasm Texture Correlation CorrTub 10
12 0.065225 Cytoplasm AreaShape Perimeter
13 0.065225 Cells AreaShape Perimeter
14 0.063790 Nuclei Intensity UpperQuartileIntensity CorrActin
15 0.063738 Cells Intensity UpperQuartileIntensity CorrActin

Cholesterol-lowering 1 0.093230 Nuclei Intensity IntegratedIntensityEdge CorrDAPI
2 0.084346 Cells AreaShape Extent
3 0.081998 Cells Texture GaborX CorrTub 3
4 0.080526 Nuclei Intensity MinIntensityEdge CorrDAPI
5 0.080094 Nuclei Intensity MinIntensity CorrDAPI
6 0.074491 Nuclei Texture DifferenceEntropy CorrDAPI 10
7 0.072067 Nuclei Texture GaborX CorrTub 10
8 0.069402 Nuclei Texture GaborY CorrTub 10

Continues on the next page
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Table S5: continued from the previous page

Mechanism of action Rank Score Image feature
9 0.066591 Cells Texture Correlation CorrTub 10

10 0.058949 Cells Zernike 3 1
11 0.056188 Cytoplasm Texture InfoMeas2 CorrTub 3
12 0.053279 Nuclei Texture Contrast CorrDAPI 10
13 0.052195 Nuclei Texture InverseDifferenceMoment CorrDAPI 10
14 0.050724 Cytoplasm Texture InfoMeas1 CorrTub 3
15 0.050655 Cytoplasm Texture GaborX CorrTub 3

DNA damage 1 0.045092 Cytoplasm Intensity IntegratedIntensity CorrTub
2 0.044668 Cytoplasm Intensity MeanIntensity CorrTub
3 0.043116 Cells Intensity MeanIntensityEdge CorrTub
4 0.040310 Nuclei Intensity MaxIntensity CorrActin
5 0.039393 Cells Neighbors PercentTouching 10
6 0.039011 Cytoplasm Intensity MedianIntensity CorrTub
7 0.038127 Nuclei Neighbors PercentTouching 10
8 0.035094 Nuclei Intensity MeanIntensity CorrActin
9 0.034896 Cytoplasm AreaShape FormFactor

10 0.034740 Nuclei Neighbors PercentTouching 20
11 0.033824 Cytoplasm Intensity StdIntensityEdge CorrActin
12 0.033655 Cells Intensity MedianIntensity CorrTub
13 0.032402 Cells Intensity StdIntensityEdge CorrTub
14 0.031690 Cytoplasm Intensity StdIntensity CorrActin
15 0.031184 Nuclei Intensity StdIntensityEdge CorrDAPI

DNA replication 1 0.079445 Nuclei Neighbors PercentTouching 20
2 0.060039 Nuclei Neighbors NumberOfNeighbors 20
3 0.045092 Cytoplasm Intensity IntegratedIntensity CorrTub
4 0.044645 Cells Intensity UpperQuartileIntensity CorrTub
5 0.042304 Nuclei Texture SumEntropy CorrDAPI 3
6 0.040094 Cytoplasm Texture GaborY CorrActin 3
7 0.039256 Nuclei Neighbors PercentTouching 10
8 0.037857 Nuclei Texture InfoMeas1 CorrDAPI 10
9 0.037525 Nuclei Texture InfoMeas1 CorrDAPI 3

10 0.035017 Cytoplasm Intensity UpperQuartileIntensity CorrTub
11 0.033534 Cytoplasm AreaShape Solidity
12 0.032936 Cytoplasm Intensity MeanIntensityEdge CorrTub
13 0.032238 Cytoplasm Intensity IntegratedIntensity CorrActin
14 0.032039 Nuclei Intensity MedianIntensity CorrTub
15 0.031169 Cells AreaShape Area

Eg5 inhibitors 1 0.136123 Cytoplasm Texture GaborX CorrTub 10
2 0.134797 Nuclei Intensity StdIntensity CorrTub
3 0.133356 Cytoplasm Texture GaborY CorrTub 10
4 0.101140 Cells Intensity StdIntensity CorrTub
5 0.095494 Nuclei Intensity MedianIntensity CorrActin
6 0.092331 Nuclei Intensity MeanIntensity CorrActin
7 0.088028 Cells Texture InfoMeas1 CorrTub 3
8 0.087820 Nuclei Intensity LowerQuartileIntensity CorrActin
9 0.082726 Cells Texture SumVariance CorrTub 10

10 0.080209 Cells Texture InfoMeas2 CorrTub 3
11 0.077260 Nuclei Intensity UpperQuartileIntensity CorrActin
12 0.075767 Nuclei Intensity MeanIntensityEdge CorrActin
13 0.075408 Nuclei Texture SumEntropy CorrTub 10
14 0.072718 Cells Intensity StdIntensity CorrActin

Continues on the next page
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Table S5: continued from the previous page

Mechanism of action Rank Score Image feature
15 0.071903 Cells Intensity UpperQuartileIntensity CorrActin

Epithelial 1 0.225988 Nuclei Neighbors NumberOfNeighbors 20
2 0.204335 Nuclei Neighbors NumberOfNeighbors 10
3 0.153913 Nuclei Neighbors PercentTouching 20
4 0.135766 Nuclei Neighbors PercentTouching 10
5 0.096608 Cytoplasm Intensity MinIntensity CorrTub
6 0.091836 Cells Intensity MinIntensityEdge CorrTub
7 0.087701 Cells Intensity MinIntensity CorrTub
8 0.085939 Cytoplasm Intensity MinIntensityEdge CorrTub
9 0.081036 Nuclei Intensity IntegratedIntensityEdge CorrTub

10 0.066969 Nuclei Intensity IntegratedIntensity CorrTub
11 0.060913 Cells AreaShape FormFactor
12 0.055912 Cytoplasm Texture Contrast CorrTub 3
13 0.053228 Nuclei Texture Contrast CorrDAPI 10
14 0.052187 Cells Intensity IntegratedIntensity CorrTub
15 0.048274 Cytoplasm AreaShape MinorAxisLength

Kinase inhibitors 1 0.134838 Nuclei Intensity IntegratedIntensityEdge CorrTub
2 0.131200 Cytoplasm Intensity IntegratedIntensityEdge CorrTub
3 0.130932 Cytoplasm AreaShape FormFactor
4 0.109810 Cells Intensity IntegratedIntensityEdge CorrTub
5 0.098938 Nuclei Intensity MeanIntensity CorrDAPI
6 0.098835 Nuclei Intensity IntegratedIntensity CorrDAPI
7 0.093230 Nuclei Intensity IntegratedIntensityEdge CorrDAPI
8 0.085660 Nuclei Intensity UpperQuartileIntensity CorrDAPI
9 0.084234 Nuclei Texture InfoMeas1 CorrDAPI 3

10 0.077387 Nuclei Intensity MedianIntensity CorrDAPI
11 0.073766 Cytoplasm AreaShape Area
12 0.069723 Nuclei Intensity MaxIntensity CorrDAPI
13 0.069517 Cytoplasm Texture InfoMeas1 CorrActin 10
14 0.066969 Nuclei Intensity IntegratedIntensity CorrTub
15 0.066534 Cytoplasm Texture GaborX CorrTub 3

Microtubule destabilizers 1 0.066222 Nuclei Texture AngularSecondMoment CorrTub 10
2 0.050640 Nuclei Texture AngularSecondMoment CorrTub 3
3 0.050038 Nuclei Texture SumVariance CorrTub 3
4 0.047789 Nuclei Texture Correlation CorrDAPI 3
5 0.047526 Nuclei Intensity IntegratedIntensityEdge CorrActin
6 0.045564 Nuclei Texture InfoMeas1 CorrDAPI 3
7 0.043635 Cells Texture Variance CorrTub 10
8 0.039665 Nuclei Texture InfoMeas2 CorrDAPI 3
9 0.036823 Nuclei Texture SumVariance CorrActin 10

10 0.035998 Nuclei Intensity StdIntensityEdge CorrActin
11 0.035751 Nuclei Texture SumVariance CorrTub 10
12 0.035645 Cells Intensity MeanIntensityEdge CorrActin
13 0.035200 Cells Intensity StdIntensityEdge CorrActin
14 0.034137 Nuclei Texture Variance CorrTub 3
15 0.034126 Cells Texture InfoMeas1 CorrActin 3

Microtubule stabilizers 1 0.266498 Nuclei Intensity StdIntensityEdge CorrTub
2 0.230081 Cytoplasm Texture AngularSecondMoment CorrTub 3
3 0.198321 Cells Texture GaborY CorrTub 10
4 0.191167 Cytoplasm Texture SumEntropy CorrTub 3

Continues on the next page
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Table S5: continued from the previous page

Mechanism of action Rank Score Image feature
5 0.190461 Cytoplasm Texture AngularSecondMoment CorrTub 10
6 0.189933 Cytoplasm Intensity StdIntensityEdge CorrTub
7 0.185869 Cells Texture GaborX CorrTub 10
8 0.178724 Cells Texture SumAverage CorrTub 3
9 0.174168 Cells Texture SumAverage CorrTub 10

10 0.160962 Cytoplasm Texture GaborY CorrTub 10
11 0.154275 Nuclei Intensity StdIntensity CorrTub
12 0.153313 Cytoplasm Texture SumAverage CorrTub 3
13 0.150168 Cells Intensity StdIntensity CorrTub
14 0.150092 Cytoplasm Texture SumEntropy CorrTub 10
15 0.149339 Cytoplasm Texture SumAverage CorrTub 10

Protein degradation 1 0.084139 Cytoplasm Texture GaborX CorrTub 10
2 0.083899 Cytoplasm Zernike 3 1
3 0.081998 Cytoplasm Intensity IntegratedIntensity CorrActin
4 0.081266 Cytoplasm Texture GaborY CorrTub 10
5 0.075760 Cytoplasm AreaShape Area
6 0.071945 Cytoplasm AreaShape Solidity
7 0.067088 Cytoplasm Texture GaborX CorrActin 10
8 0.064361 Cytoplasm Zernike 0 0
9 0.056766 Cytoplasm Texture GaborY CorrActin 10

10 0.056530 Cells Texture GaborX CorrActin 10
11 0.046923 Cells Texture GaborY CorrActin 10
12 0.045643 Cells Texture Contrast CorrActin 10
13 0.045052 Cytoplasm AreaShape Extent
14 0.044919 Cells Texture GaborX CorrTub 10
15 0.040845 Cells Texture DifferenceVariance CorrActin 10

Protein synthesis 1 0.092005 Cytoplasm Texture Correlation CorrActin 3
2 0.086052 Cells Texture Correlation CorrActin 3
3 0.068384 Cytoplasm Texture DifferenceVariance CorrActin 3
4 0.066499 Cells Texture DifferenceVariance CorrActin 3
5 0.064255 Cytoplasm Texture Contrast CorrTub 3
6 0.053710 Cytoplasm Texture SumAverage CorrActin 3
7 0.053177 Cytoplasm Texture Contrast CorrActin 3
8 0.052644 Cells Texture InfoMeas1 CorrActin 3
9 0.051165 Cells Texture SumVariance CorrTub 3

10 0.050724 Cytoplasm Texture InfoMeas1 CorrTub 3
11 0.050487 Cytoplasm Texture GaborX CorrTub 3
12 0.048193 Cells Texture SumVariance CorrTub 10
13 0.045031 Cells Texture Variance CorrTub 10
14 0.041479 Nuclei Intensity MinIntensityEdge CorrActin
15 0.038174 Cells Intensity LowerQuartileIntensity CorrActin
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Table S6: The number of times each feature was selected by the SVMRFE method. Only the 20 most selected features are shown.

Feature Number of times selected

Cells Neighbors NumberOfNeighbors 10 171
Cytoplasm Texture GaborY CorrTub 10 138
Cytoplasm Texture GaborX CorrTub 10 133
Cells Neighbors PercentTouching 3 115
Cells Neighbors NumberOfNeighbors 3 112
Nuclei Intensity LowerQuartileIntensity CorrDAPI 105
Cells Intensity IntegratedIntensityEdge CorrTub 85
Cytoplasm Texture GaborX CorrActin 10 79
Nuclei Intensity MinIntensityEdge CorrDAPI 78
Nuclei AreaShape FormFactor 77
Cells Neighbors PercentTouching 10 74
Nuclei Intensity MaxIntensity CorrTub 74
Nuclei Intensity MedianIntensity CorrDAPI 74
Nuclei Texture SumAverage CorrDAPI 3 73
Nuclei Texture SumAverage CorrDAPI 10 72
Nuclei Intensity MinIntensity CorrDAPI 69
Cells Intensity MeanIntensityEdge CorrTub 68
Cytoplasm Texture GaborY CorrActin 10 67
Cells Intensity StdIntensityEdge CorrTub 65
Nuclei Texture SumVariance CorrDAPI 3 61

Table S7: Accuracies for all combinations of dimensionality-reducing preprocessing method and profiling method

Profiling method

Dimensionality reduction method Means KS SVM GM

None 83% 83% 81% 81%
Factor analysis 94% 90% 80% 84%
PCA 81% 90% 73% 73%
Factor-analysis–based feature selection 67% 65% 68% 75%

Table S8: The 15 features most heavily loaded onto each factor in the 50-factor model

Factor number Measurements

1

Nuclei Texture GaborY CorrDAPI 10
Nuclei Intensity StdIntensityEdge CorrActin
Nuclei Texture Variance CorrDAPI 3
Nuclei Texture Entropy CorrActin 10
Nuclei Texture GaborX CorrDAPI 10

2

Nuclei Texture DifferenceEntropy CorrDAPI 10
Nuclei Texture Contrast CorrDAPI 10
Cytoplasm Texture InfoMeas2 CorrTub 3
Nuclei Texture DifferenceVariance CorrDAPI 10
Cytoplasm Texture SumVariance CorrTub 3

Continues on the next page
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Cells_Neighbors_NumberOfNeighbors_10
Cytoplasm_Texture_GaborY_CorrTub_10
Cytoplasm_Texture_GaborX_CorrTub_10
Cells_Neighbors_PercentTouching_3
Cells_Neighbors_NumberOfNeighbors_3
Nuclei_Intensity_LowerQuartileIntensity_CorrDAPI
Cells_Intensity_IntegratedIntensityEdge_CorrTub
Cytoplasm_Texture_GaborX_CorrActin_10
Nuclei_Intensity_MinIntensityEdge_CorrDAPI
Nuclei_AreaShape_FormFactor
Cells_Neighbors_PercentTouching_10
Nuclei_Intensity_MaxIntensity_CorrTub
Nuclei_Intensity_MedianIntensity_CorrDAPI
Nuclei_Texture_SumAverage_CorrDAPI_3
Nuclei_Texture_SumAverage_CorrDAPI_10
Nuclei_Intensity_MinIntensity_CorrDAPI
Cells_Intensity_MeanIntensityEdge_CorrTub
Cytoplasm_Texture_GaborY_CorrActin_10
Cells_Intensity_StdIntensityEdge_CorrTub
Nuclei_Texture_SumVariance_CorrDAPI_3
Nuclei_Texture_GaborY_CorrDAPI_10
Nuclei_Intensity_StdIntensityEdge_CorrActin
Nuclei_Texture_Variance_CorrDAPI_3
Nuclei_Texture_Entropy_CorrActin_10
Nuclei_Texture_GaborX_CorrDAPI_10
Nuclei_Texture_DifferenceEntropy_CorrDAPI_10
Nuclei_Texture_Contrast_CorrDAPI_10
Cytoplasm_Texture_InfoMeas2_CorrTub_3
Nuclei_Texture_DifferenceVariance_CorrDAPI_10
Cytoplasm_Texture_SumVariance_CorrTub_3


Table S8: continued from the previous page

Factor number Measurements

3

Cells Zernike 1 1
Cells Zernike 0 0
Cells Neighbors FirstClosestYVector 10
Cells Neighbors FirstClosestYVector 3
Cytoplasm Zernike 1 1

4

Nuclei Texture AngularSecondMoment CorrTub 3
Nuclei Texture Entropy CorrTub 3
Nuclei Intensity MinIntensity CorrTub
Nuclei Intensity MinIntensityEdge CorrTub
Cells Texture AngularSecondMoment CorrTub 3

5

Nuclei Texture SumEntropy CorrTub 10
Nuclei Texture SumAverage CorrTub 10
Cells Texture SumAverage CorrTub 10
Nuclei Texture SumAverage CorrTub 3
Nuclei Texture Entropy CorrTub 10

6

Cells Intensity IntegratedIntensityEdge CorrTub
Cytoplasm Texture InfoMeas2 CorrActin 3
Nuclei Texture SumEntropy CorrActin 3
Nuclei Texture DifferenceEntropy CorrTub 3
Cytoplasm Texture InfoMeas1 CorrActin 3

7

Nuclei Zernike 2 0
Nuclei Zernike 0 0
Nuclei AreaShape Eccentricity
Nuclei Zernike 1 1
Nuclei Zernike 2 2

8

Nuclei Texture DifferenceEntropy CorrTub 10
Nuclei Texture Entropy CorrTub 10
Nuclei Texture SumEntropy CorrTub 3
Nuclei Texture DifferenceEntropy CorrDAPI 10
Nuclei Texture Contrast CorrDAPI 10

9

Cells AreaShape FormFactor
Cytoplasm Texture InverseDifferenceMoment CorrActin 10
Cells Neighbors PercentTouching 3
Cytoplasm AreaShape Perimeter
Cells AreaShape Perimeter

10

Cells Intensity MeanIntensityEdge CorrTub
Cytoplasm Intensity MeanIntensityEdge CorrTub
Cytoplasm Intensity MeanIntensity CorrTub
Cytoplasm Intensity LowerQuartileIntensity CorrTub
Cytoplasm Intensity MedianIntensity CorrTub
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Cells_Zernike_1_1
Cells_Zernike_0_0
Cells_Neighbors_FirstClosestYVector_10
Cells_Neighbors_FirstClosestYVector_3
Cytoplasm_Zernike_1_1
Nuclei_Texture_AngularSecondMoment_CorrTub_3
Nuclei_Texture_Entropy_CorrTub_3
Nuclei_Intensity_MinIntensity_CorrTub
Nuclei_Intensity_MinIntensityEdge_CorrTub
Cells_Texture_AngularSecondMoment_CorrTub_3
Nuclei_Texture_SumEntropy_CorrTub_10
Nuclei_Texture_SumAverage_CorrTub_10
Cells_Texture_SumAverage_CorrTub_10
Nuclei_Texture_SumAverage_CorrTub_3
Nuclei_Texture_Entropy_CorrTub_10
Cells_Intensity_IntegratedIntensityEdge_CorrTub
Cytoplasm_Texture_InfoMeas2_CorrActin_3
Nuclei_Texture_SumEntropy_CorrActin_3
Nuclei_Texture_DifferenceEntropy_CorrTub_3
Cytoplasm_Texture_InfoMeas1_CorrActin_3
Nuclei_Zernike_2_0
Nuclei_Zernike_0_0
Nuclei_AreaShape_Eccentricity
Nuclei_Zernike_1_1
Nuclei_Zernike_2_2
Nuclei_Texture_DifferenceEntropy_CorrTub_10
Nuclei_Texture_Entropy_CorrTub_10
Nuclei_Texture_SumEntropy_CorrTub_3
Nuclei_Texture_DifferenceEntropy_CorrDAPI_10
Nuclei_Texture_Contrast_CorrDAPI_10
Cells_AreaShape_FormFactor
Cytoplasm_Texture_InverseDifferenceMoment_CorrActin_10
Cells_Neighbors_PercentTouching_3
Cytoplasm_AreaShape_Perimeter
Cells_AreaShape_Perimeter
Cells_Intensity_MeanIntensityEdge_CorrTub
Cytoplasm_Intensity_MeanIntensityEdge_CorrTub
Cytoplasm_Intensity_MeanIntensity_CorrTub
Cytoplasm_Intensity_LowerQuartileIntensity_CorrTub
Cytoplasm_Intensity_MedianIntensity_CorrTub


Table S8: continued from the previous page

Factor number Measurements

11

Nuclei Texture Entropy CorrTub 10
Nuclei Texture Entropy CorrTub 3
Cytoplasm AreaShape MinorAxisLength
Nuclei Texture AngularSecondMoment CorrTub 3
Cells AreaShape MinorAxisLength

12

Cells Neighbors SecondClosestYVector 3
Cells Neighbors SecondClosestYVector 10
Cytoplasm Texture InfoMeas2 CorrTub 3
Nuclei Texture InfoMeas2 CorrTub 3
Nuclei Texture InfoMeas1 CorrTub 3

13

Nuclei Texture DifferenceEntropy CorrActin 3
Nuclei Texture Contrast CorrActin 3
Nuclei Texture InverseDifferenceMoment CorrDAPI 3
Nuclei Texture InverseDifferenceMoment CorrActin 3
Nuclei Texture DifferenceVariance CorrActin 3

14

Cells Texture Correlation CorrTub 3
Cytoplasm Texture Correlation CorrTub 3
Cells Texture InfoMeas2 CorrTub 3
Cells Texture SumEntropy CorrTub 10
Cells Texture SumEntropy CorrTub 3

15

Cells Texture Variance CorrActin 3
Nuclei Texture Variance CorrActin 3
Cells Texture Entropy CorrActin 3
Cells Texture Variance CorrActin 10
Nuclei Texture SumVariance CorrActin 3

16

Cytoplasm Texture Correlation CorrActin 3
Cytoplasm Texture InfoMeas2 CorrActin 3
Nuclei Texture SumVariance CorrTub 3
Nuclei Texture Variance CorrTub 3
Cells Texture SumEntropy CorrActin 3

17

Nuclei Texture Entropy CorrActin 3
Nuclei Texture AngularSecondMoment CorrActin 3
Nuclei Texture Entropy CorrActin 10
Nuclei Texture AngularSecondMoment CorrActin 10
Nuclei Texture SumEntropy CorrActin 3

18

Cells Texture Entropy CorrTub 3
Cytoplasm Texture Entropy CorrTub 3
Cells Texture DifferenceEntropy CorrTub 3
Cells Texture AngularSecondMoment CorrTub 3
Cells Texture InverseDifferenceMoment CorrTub 3
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Nuclei_Texture_Entropy_CorrTub_10
Nuclei_Texture_Entropy_CorrTub_3
Cytoplasm_AreaShape_MinorAxisLength
Nuclei_Texture_AngularSecondMoment_CorrTub_3
Cells_AreaShape_MinorAxisLength
Cells_Neighbors_SecondClosestYVector_3
Cells_Neighbors_SecondClosestYVector_10
Cytoplasm_Texture_InfoMeas2_CorrTub_3
Nuclei_Texture_InfoMeas2_CorrTub_3
Nuclei_Texture_InfoMeas1_CorrTub_3
Nuclei_Texture_DifferenceEntropy_CorrActin_3
Nuclei_Texture_Contrast_CorrActin_3
Nuclei_Texture_InverseDifferenceMoment_CorrDAPI_3
Nuclei_Texture_InverseDifferenceMoment_CorrActin_3
Nuclei_Texture_DifferenceVariance_CorrActin_3
Cells_Texture_Correlation_CorrTub_3
Cytoplasm_Texture_Correlation_CorrTub_3
Cells_Texture_InfoMeas2_CorrTub_3
Cells_Texture_SumEntropy_CorrTub_10
Cells_Texture_SumEntropy_CorrTub_3
Cells_Texture_Variance_CorrActin_3
Nuclei_Texture_Variance_CorrActin_3
Cells_Texture_Entropy_CorrActin_3
Cells_Texture_Variance_CorrActin_10
Nuclei_Texture_SumVariance_CorrActin_3
Cytoplasm_Texture_Correlation_CorrActin_3
Cytoplasm_Texture_InfoMeas2_CorrActin_3
Nuclei_Texture_SumVariance_CorrTub_3
Nuclei_Texture_Variance_CorrTub_3
Cells_Texture_SumEntropy_CorrActin_3
Nuclei_Texture_Entropy_CorrActin_3
Nuclei_Texture_AngularSecondMoment_CorrActin_3
Nuclei_Texture_Entropy_CorrActin_10
Nuclei_Texture_AngularSecondMoment_CorrActin_10
Nuclei_Texture_SumEntropy_CorrActin_3
Cells_Texture_Entropy_CorrTub_3
Cytoplasm_Texture_Entropy_CorrTub_3
Cells_Texture_DifferenceEntropy_CorrTub_3
Cells_Texture_AngularSecondMoment_CorrTub_3
Cells_Texture_InverseDifferenceMoment_CorrTub_3
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Factor number Measurements

19

Cells Intensity MinIntensityEdge CorrActin
Cytoplasm Intensity MinIntensityEdge CorrActin
Cytoplasm Intensity MinIntensity CorrActin
Cells Intensity MinIntensity CorrActin
Cells Intensity MeanIntensityEdge CorrActin

20

Cells Texture Correlation CorrTub 3
Cells Texture InfoMeas1 CorrTub 3
Cytoplasm Texture Correlation CorrActin 3
Cytoplasm Texture Correlation CorrTub 3
Cells Texture InfoMeas2 CorrActin 3

21

Cytoplasm Texture SumEntropy CorrActin 10
Cells Texture InverseDifferenceMoment CorrTub 10
Cytoplasm Texture Entropy CorrActin 10
Cytoplasm Texture SumEntropy CorrActin 3
Cytoplasm Texture AngularSecondMoment CorrActin 10

22

Cytoplasm Intensity StdIntensityEdge CorrActin
Cells Intensity StdIntensityEdge CorrActin
Cells Intensity StdIntensity CorrActin
Cytoplasm Intensity StdIntensity CorrActin
Nuclei Intensity StdIntensityEdge CorrActin

23

Nuclei Intensity UpperQuartileIntensity CorrActin
Nuclei Intensity IntegratedIntensity CorrActin
Nuclei Texture SumAverage CorrActin 10
Nuclei Intensity MedianIntensity CorrActin
Nuclei Texture SumAverage CorrActin 3

24

Nuclei Intensity IntegratedIntensityEdge CorrTub
Nuclei Intensity MeanIntensityEdge CorrTub
Nuclei Intensity MaxIntensityEdge CorrTub
Nuclei Texture Correlation CorrActin 10
Cytoplasm Intensity StdIntensityEdge CorrTub

25

Cytoplasm Zernike 0 0
Cytoplasm Zernike 1 1
Cytoplasm Intensity IntegratedIntensity CorrTub
Cells AreaShape MinorAxisLength
Cytoplasm Intensity IntegratedIntensity CorrActin

26

Nuclei Intensity IntegratedIntensityEdge CorrTub
Nuclei Intensity MaxIntensityEdge CorrTub
Cytoplasm Intensity MaxIntensityEdge CorrTub
Nuclei Texture SumEntropy CorrDAPI 10
Nuclei Texture SumVariance CorrDAPI 10
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Cells_Intensity_MinIntensityEdge_CorrActin
Cytoplasm_Intensity_MinIntensityEdge_CorrActin
Cytoplasm_Intensity_MinIntensity_CorrActin
Cells_Intensity_MinIntensity_CorrActin
Cells_Intensity_MeanIntensityEdge_CorrActin
Cells_Texture_Correlation_CorrTub_3
Cells_Texture_InfoMeas1_CorrTub_3
Cytoplasm_Texture_Correlation_CorrActin_3
Cytoplasm_Texture_Correlation_CorrTub_3
Cells_Texture_InfoMeas2_CorrActin_3
Cytoplasm_Texture_SumEntropy_CorrActin_10
Cells_Texture_InverseDifferenceMoment_CorrTub_10
Cytoplasm_Texture_Entropy_CorrActin_10
Cytoplasm_Texture_SumEntropy_CorrActin_3
Cytoplasm_Texture_AngularSecondMoment_CorrActin_10
Cytoplasm_Intensity_StdIntensityEdge_CorrActin
Cells_Intensity_StdIntensityEdge_CorrActin
Cells_Intensity_StdIntensity_CorrActin
Cytoplasm_Intensity_StdIntensity_CorrActin
Nuclei_Intensity_StdIntensityEdge_CorrActin
Nuclei_Intensity_UpperQuartileIntensity_CorrActin
Nuclei_Intensity_IntegratedIntensity_CorrActin
Nuclei_Texture_SumAverage_CorrActin_10
Nuclei_Intensity_MedianIntensity_CorrActin
Nuclei_Texture_SumAverage_CorrActin_3
Nuclei_Intensity_IntegratedIntensityEdge_CorrTub
Nuclei_Intensity_MeanIntensityEdge_CorrTub
Nuclei_Intensity_MaxIntensityEdge_CorrTub
Nuclei_Texture_Correlation_CorrActin_10
Cytoplasm_Intensity_StdIntensityEdge_CorrTub
Cytoplasm_Zernike_0_0
Cytoplasm_Zernike_1_1
Cytoplasm_Intensity_IntegratedIntensity_CorrTub
Cells_AreaShape_MinorAxisLength
Cytoplasm_Intensity_IntegratedIntensity_CorrActin
Nuclei_Intensity_IntegratedIntensityEdge_CorrTub
Nuclei_Intensity_MaxIntensityEdge_CorrTub
Cytoplasm_Intensity_MaxIntensityEdge_CorrTub
Nuclei_Texture_SumEntropy_CorrDAPI_10
Nuclei_Texture_SumVariance_CorrDAPI_10


Table S8: continued from the previous page

Factor number Measurements

27

Cytoplasm Intensity IntegratedIntensityEdge CorrActin
Cells Intensity IntegratedIntensityEdge CorrActin
Nuclei Intensity MeanIntensityEdge CorrActin
Nuclei Intensity MinIntensityEdge CorrActin
Nuclei Intensity MinIntensity CorrActin

28

Nuclei Texture AngularSecondMoment CorrDAPI 3
Nuclei Texture Entropy CorrDAPI 3
Cells Texture SumVariance CorrTub 10
Nuclei Texture InverseDifferenceMoment CorrDAPI 3
Cells Texture SumVariance CorrTub 3

29

Nuclei Texture DifferenceEntropy CorrTub 3
Nuclei Texture DifferenceVariance CorrTub 3
Nuclei Texture Contrast CorrTub 3
Cells Texture SumVariance CorrActin 10
Nuclei Texture InverseDifferenceMoment CorrTub 3

30

Cells Intensity MeanIntensityEdge CorrActin
Cells Intensity MaxIntensityEdge CorrActin
Cytoplasm Intensity MaxIntensity CorrActin
Cytoplasm Intensity MeanIntensityEdge CorrActin
Cytoplasm Intensity MeanIntensity CorrActin

31

Cells Intensity MaxIntensityEdge CorrTub
Cells Intensity MeanIntensityEdge CorrTub
Cytoplasm Texture Correlation CorrActin 3
Cytoplasm Intensity MeanIntensityEdge CorrTub
Cytoplasm Intensity MaxIntensity CorrTub

32

Cytoplasm Texture Entropy CorrActin 3
Cytoplasm Texture InverseDifferenceMoment CorrActin 3
Cytoplasm Texture AngularSecondMoment CorrActin 3
Cells Texture InverseDifferenceMoment CorrActin 3
Cytoplasm Texture DifferenceEntropy CorrActin 3

33

Nuclei Texture Correlation CorrActin 3
Nuclei Texture InfoMeas2 CorrActin 3
Nuclei Texture InfoMeas1 CorrActin 3
Nuclei Texture Correlation CorrActin 10
Cytoplasm Intensity MeanIntensity CorrTub

34

Nuclei Intensity IntegratedIntensity CorrActin
Nuclei Intensity IntegratedIntensityEdge CorrActin
Cells Neighbors FirstClosestYVector 10
Cells Neighbors FirstClosestYVector 3
Cells Neighbors FirstClosestXVector 10
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Cytoplasm_Intensity_IntegratedIntensityEdge_CorrActin
Cells_Intensity_IntegratedIntensityEdge_CorrActin
Nuclei_Intensity_MeanIntensityEdge_CorrActin
Nuclei_Intensity_MinIntensityEdge_CorrActin
Nuclei_Intensity_MinIntensity_CorrActin
Nuclei_Texture_AngularSecondMoment_CorrDAPI_3
Nuclei_Texture_Entropy_CorrDAPI_3
Cells_Texture_SumVariance_CorrTub_10
Nuclei_Texture_InverseDifferenceMoment_CorrDAPI_3
Cells_Texture_SumVariance_CorrTub_3
Nuclei_Texture_DifferenceEntropy_CorrTub_3
Nuclei_Texture_DifferenceVariance_CorrTub_3
Nuclei_Texture_Contrast_CorrTub_3
Cells_Texture_SumVariance_CorrActin_10
Nuclei_Texture_InverseDifferenceMoment_CorrTub_3
Cells_Intensity_MeanIntensityEdge_CorrActin
Cells_Intensity_MaxIntensityEdge_CorrActin
Cytoplasm_Intensity_MaxIntensity_CorrActin
Cytoplasm_Intensity_MeanIntensityEdge_CorrActin
Cytoplasm_Intensity_MeanIntensity_CorrActin
Cells_Intensity_MaxIntensityEdge_CorrTub
Cells_Intensity_MeanIntensityEdge_CorrTub
Cytoplasm_Texture_Correlation_CorrActin_3
Cytoplasm_Intensity_MeanIntensityEdge_CorrTub
Cytoplasm_Intensity_MaxIntensity_CorrTub
Cytoplasm_Texture_Entropy_CorrActin_3
Cytoplasm_Texture_InverseDifferenceMoment_CorrActin_3
Cytoplasm_Texture_AngularSecondMoment_CorrActin_3
Cells_Texture_InverseDifferenceMoment_CorrActin_3
Cytoplasm_Texture_DifferenceEntropy_CorrActin_3
Nuclei_Texture_Correlation_CorrActin_3
Nuclei_Texture_InfoMeas2_CorrActin_3
Nuclei_Texture_InfoMeas1_CorrActin_3
Nuclei_Texture_Correlation_CorrActin_10
Cytoplasm_Intensity_MeanIntensity_CorrTub
Nuclei_Intensity_IntegratedIntensity_CorrActin
Nuclei_Intensity_IntegratedIntensityEdge_CorrActin
Cells_Neighbors_FirstClosestYVector_10
Cells_Neighbors_FirstClosestYVector_3
Cells_Neighbors_FirstClosestXVector_10
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Factor number Measurements

35

Cytoplasm Intensity StdIntensity CorrTub
Cells Texture DifferenceVariance CorrTub 10
Cytoplasm AreaShape Eccentricity
Cells AreaShape Eccentricity
Cytoplasm Zernike 2 2

36

Cells Intensity LowerQuartileIntensity CorrActin
Cells Intensity MedianIntensity CorrActin
Cells Intensity MeanIntensity CorrActin
Cytoplasm Intensity MedianIntensity CorrActin
Cytoplasm Intensity MeanIntensity CorrActin

37

Nuclei Intensity IntegratedIntensityEdge CorrDAPI
Nuclei AreaShape Solidity
Nuclei AreaShape FormFactor
Nuclei AreaShape Extent
Nuclei Intensity MeanIntensityEdge CorrDAPI

38

Cytoplasm AreaShape Solidity
Cytoplasm AreaShape Extent
Cytoplasm Texture Contrast CorrActin 3
Cytoplasm Intensity MinIntensity CorrTub
Cells Intensity MinIntensity CorrTub

39

Nuclei Texture SumAverage CorrDAPI 10
Nuclei Intensity StdIntensity CorrTub
Nuclei Texture SumAverage CorrDAPI 3
Nuclei Texture GaborX CorrTub 10
Cells Intensity MaxIntensity CorrTub

40

Nuclei Texture Contrast CorrDAPI 10
Nuclei Texture DifferenceVariance CorrDAPI 10
Cells Texture DifferenceVariance CorrActin 10
Nuclei Texture SumVariance CorrDAPI 3
Cells Texture Contrast CorrActin 10

41

Cytoplasm Texture SumAverage CorrTub 10
Cytoplasm Texture SumAverage CorrTub 3
Cells Texture SumAverage CorrTub 3
Cells Texture SumAverage CorrTub 10
Nuclei Texture SumAverage CorrTub 10

42

Cytoplasm Texture Contrast CorrTub 10
Cytoplasm Texture DifferenceVariance CorrTub 10
Cytoplasm Texture DifferenceEntropy CorrTub 3
Cytoplasm Intensity UpperQuartileIntensity CorrTub
Cells Texture Contrast CorrTub 3
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Cytoplasm_Intensity_StdIntensity_CorrTub
Cells_Texture_DifferenceVariance_CorrTub_10
Cytoplasm_AreaShape_Eccentricity
Cells_AreaShape_Eccentricity
Cytoplasm_Zernike_2_2
Cells_Intensity_LowerQuartileIntensity_CorrActin
Cells_Intensity_MedianIntensity_CorrActin
Cells_Intensity_MeanIntensity_CorrActin
Cytoplasm_Intensity_MedianIntensity_CorrActin
Cytoplasm_Intensity_MeanIntensity_CorrActin
Nuclei_Intensity_IntegratedIntensityEdge_CorrDAPI
Nuclei_AreaShape_Solidity
Nuclei_AreaShape_FormFactor
Nuclei_AreaShape_Extent
Nuclei_Intensity_MeanIntensityEdge_CorrDAPI
Cytoplasm_AreaShape_Solidity
Cytoplasm_AreaShape_Extent
Cytoplasm_Texture_Contrast_CorrActin_3
Cytoplasm_Intensity_MinIntensity_CorrTub
Cells_Intensity_MinIntensity_CorrTub
Nuclei_Texture_SumAverage_CorrDAPI_10
Nuclei_Intensity_StdIntensity_CorrTub
Nuclei_Texture_SumAverage_CorrDAPI_3
Nuclei_Texture_GaborX_CorrTub_10
Cells_Intensity_MaxIntensity_CorrTub
Nuclei_Texture_Contrast_CorrDAPI_10
Nuclei_Texture_DifferenceVariance_CorrDAPI_10
Cells_Texture_DifferenceVariance_CorrActin_10
Nuclei_Texture_SumVariance_CorrDAPI_3
Cells_Texture_Contrast_CorrActin_10
Cytoplasm_Texture_SumAverage_CorrTub_10
Cytoplasm_Texture_SumAverage_CorrTub_3
Cells_Texture_SumAverage_CorrTub_3
Cells_Texture_SumAverage_CorrTub_10
Nuclei_Texture_SumAverage_CorrTub_10
Cytoplasm_Texture_Contrast_CorrTub_10
Cytoplasm_Texture_DifferenceVariance_CorrTub_10
Cytoplasm_Texture_DifferenceEntropy_CorrTub_3
Cytoplasm_Intensity_UpperQuartileIntensity_CorrTub
Cells_Texture_Contrast_CorrTub_3


Table S8: continued from the previous page
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43

Cytoplasm Intensity IntegratedIntensityEdge CorrTub
Cells Intensity IntegratedIntensityEdge CorrTub
Nuclei Texture Entropy CorrActin 3
Nuclei Intensity IntegratedIntensityEdge CorrTub
Nuclei Texture SumEntropy CorrActin 10

44

Nuclei AreaShape Perimeter
Nuclei AreaShape Area
Nuclei AreaShape MajorAxisLength
Nuclei Intensity IntegratedIntensity CorrDAPI
Nuclei AreaShape MinorAxisLength

45

Cells Zernike 3 1
Cytoplasm AreaShape Eccentricity
Cells AreaShape Eccentricity
Cells Zernike 0 0
Cells AreaShape Solidity

46

Nuclei AreaShape Eccentricity
Nuclei Intensity IntegratedIntensityEdge CorrDAPI
Nuclei Zernike 0 0
Nuclei Intensity MeanIntensityEdge CorrDAPI
Nuclei Zernike 2 0

47

Cells Intensity MinIntensity CorrActin
Cytoplasm Intensity MinIntensity CorrActin
Cytoplasm Intensity MinIntensityEdge CorrActin
Cells Intensity MinIntensityEdge CorrActin
Nuclei Neighbors PercentTouching 10

48

Cells Texture SumAverage CorrActin 3
Cells Texture SumAverage CorrActin 10
Nuclei Texture Variance CorrDAPI 3
Nuclei Neighbors SecondClosestXVector 20
Nuclei Neighbors SecondClosestXVector 10

49

Cells Texture DifferenceVariance CorrTub 3
Cells Texture Contrast CorrTub 3
Cytoplasm Texture DifferenceVariance CorrTub 3
Cytoplasm Texture Contrast CorrTub 3
Cells Texture DifferenceEntropy CorrTub 3

50

Cells Texture Correlation CorrActin 10
Cells Texture InfoMeas2 CorrActin 3
Cells Texture Correlation CorrActin 3
Cells Texture InfoMeas2 CorrActin 10
Nuclei Texture Contrast CorrActin 3

56

Cytoplasm_Intensity_IntegratedIntensityEdge_CorrTub
Cells_Intensity_IntegratedIntensityEdge_CorrTub
Nuclei_Texture_Entropy_CorrActin_3
Nuclei_Intensity_IntegratedIntensityEdge_CorrTub
Nuclei_Texture_SumEntropy_CorrActin_10
Nuclei_AreaShape_Perimeter
Nuclei_AreaShape_Area
Nuclei_AreaShape_MajorAxisLength
Nuclei_Intensity_IntegratedIntensity_CorrDAPI
Nuclei_AreaShape_MinorAxisLength
Cells_Zernike_3_1
Cytoplasm_AreaShape_Eccentricity
Cells_AreaShape_Eccentricity
Cells_Zernike_0_0
Cells_AreaShape_Solidity
Nuclei_AreaShape_Eccentricity
Nuclei_Intensity_IntegratedIntensityEdge_CorrDAPI
Nuclei_Zernike_0_0
Nuclei_Intensity_MeanIntensityEdge_CorrDAPI
Nuclei_Zernike_2_0
Cells_Intensity_MinIntensity_CorrActin
Cytoplasm_Intensity_MinIntensity_CorrActin
Cytoplasm_Intensity_MinIntensityEdge_CorrActin
Cells_Intensity_MinIntensityEdge_CorrActin
Nuclei_Neighbors_PercentTouching_10
Cells_Texture_SumAverage_CorrActin_3
Cells_Texture_SumAverage_CorrActin_10
Nuclei_Texture_Variance_CorrDAPI_3
Nuclei_Neighbors_SecondClosestXVector_20
Nuclei_Neighbors_SecondClosestXVector_10
Cells_Texture_DifferenceVariance_CorrTub_3
Cells_Texture_Contrast_CorrTub_3
Cytoplasm_Texture_DifferenceVariance_CorrTub_3
Cytoplasm_Texture_Contrast_CorrTub_3
Cells_Texture_DifferenceEntropy_CorrTub_3
Cells_Texture_Correlation_CorrActin_10
Cells_Texture_InfoMeas2_CorrActin_3
Cells_Texture_Correlation_CorrActin_3
Cells_Texture_InfoMeas2_CorrActin_10
Nuclei_Texture_Contrast_CorrActin_3


Table S9: Distribution of mechanisms of action across batches

Mechanism of action Number of compounds Batches

Actin disruptors 3 02, 01
Aurora kinase inhibitors 3 01, 04, 03
Cholesterol-lowering 2 09
DMSO 1 02, 10, 03, 01, 06, 08, 07, 09, 04, 05
DNA damage 4 04, 03
DNA replication 4 08, 02, 09
Eg5 inhibitors 2 03, 10
Epithelial 3 05, 08, 10
Kinase inhibitors 3 07
Microtubule destabilizers 4 01, 03
Microtubule stabilizers 3 07, 01
Protein degradation 4 07, 02, 06
Protein synthesis 3 04, 03

Table S10: AUCs and p-values for the five profiling methods

Profiling method

Means KS statistic SVM normalvector Gaussian mixture Factor analysis

Mechanism AUC p-value AUC p-value AUC p-value AUC p-value AUC p-value

Actin disruptors 0.674 0.0295 0.914  0.0001 0.998  0.0001 0.689 0.0196 0.979  0.0001
Aurora kinase inhibitors 1.000  0.0001 1.000  0.0001 0.988  0.0001 1.000  0.0001 1.000  0.0001
Cholesterol-lowering 0.879  0.0001 0.966  0.0001 0.923  0.0001 0.741 0.0005 0.965  0.0001
DNA damage 0.834  0.0001 0.742  0.0001 0.942  0.0001 0.868  0.0001 0.930  0.0001
DNA replication 0.838  0.0001 0.708  0.0001 0.816  0.0001 0.834  0.0001 0.903  0.0001
Eg5 inhibitors 0.987  0.0001 0.994  0.0001 0.984  0.0001 0.995  0.0001 1.000  0.0001
Epithelial 0.973  0.0001 0.966  0.0001 0.924  0.0001 0.966  0.0001 0.978  0.0001
Kinase inhibitors 0.999  0.0001 0.995  0.0001 0.993  0.0001 0.994  0.0001 1.000  0.0001
Microtubule destabilizers 0.852  0.0001 0.793  0.0001 0.881  0.0001 0.854  0.0001 0.865  0.0001
Microtubule stabilizers 0.781  0.0001 0.804  0.0001 0.981  0.0001 0.955  0.0001 0.998  0.0001
Protein degradation 0.722 0.0002 0.715 0.0003 0.716 0.0003 0.701 0.0007 0.816  0.0001
Protein synthesis 0.976  0.0001 0.985  0.0001 0.997  0.0001 0.975  0.0001 0.997  0.0001
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