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Abstract

Because images of neurons show interweaved processes
from multiple cells, it is hard to determine which pixels be-
long to each cell, and consequently to analyze the images
automatically. To manage these difficulties, we introduce
probabilistic segmentation, in which each pixel is assigned
a probability of belonging to each cell instead of being cat-
egorically assigned to one cell. We propose a randomized
algorithm for probabilistic segmentation. The algorithm is
based on repeated, intensity-weighted random walks on the
image, and leads to improved segmentation quality.

Analysis and mining techniques can utilize the more nu-
anced and complete information that the probabilistic seg-
mentation yields about an image. Such techniques can then
compute probabilistic values, which indicate the level of
confidence that can be placed in them.

1 Introduction
The role of microscopy, a cornerstone of many fields of

biology, is changing. Rather than a likeness subject to visual
inspection, the micrograph is becoming a quantitative mea-
surement subject to formal analysis. Together with high-
throughput acquisition techniques, this change in mind set
may bring data-driven research, and the success it has had
in genetics, to other fields.

Neuroscience is one field that could benefit greatly from
data-driven research. Databases for images are starting to
become available [10, 12, 13], but quantitative analyses are
still far from being central to the research. One reason for
this is that neurons in vitro (in a dish) develop and respond
to injuries and other stimuli quite differently than neurons
in vivo (in tissue). One must therefore image and study cells
in tissue—a much more difficult undertaking, both in terms
of acquisition and analysis.

One approach to understanding the vast complexity of
the brain is to study the retina, which is part of the central
nervous system, but is accessible and contains relatively few
classes of cells organized in well-defined layers. The elec-
trical signals generated by the photoreceptors in response to

Figure 1. Confocal micrograph of three horizon-
tal cells in a detached cat retina, labeled by anti-
neurofilament (green) and anti-calbindin (blue).

light go through the bipolar cells and ganglion cells before
they are finally passed through the optic nerve into the rest
of the brain. There are other types of neurons in the retina
in addition to these three, however. In particular, horizontal
cells are fairly flat neurons located in the outer plexiform
layer, where the photoreceptors and bipolar cells meet [7].
As their name indicates, they provide connections that are
horizontal, i.e., perpendicular to the main direction of sig-
naling. Figure 1 shows three horizontal cells. (All images
have had their brightness and contrast adjusted so the mor-
phology of the cells would be visible in print.)

Images like the one in Figure 1 are acquired by stain-
ing the retina with fluorescent antibodies to proteins that
are present in (and specific to) the cells or parts of cells of
interest. Two, three, or even four antibodies can be used
together as long as they fluoresce in response to different
wavelengths of light. The tissue in Figure 1 was stained
with anti-neurofilament (green) and anti-calbindin (blue),
which together label entire horizontal cells in cat retinas.

The processes extending from the cell bodies are called
neurites, and generally taper as they extend farther from the
cell. The intensity in the image also decreases. This is a
result of the cell becoming thinner in the third dimension:
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there is less cytoplasm, and therefore fewer proteins and flu-
orescent antibodies. It is hard to decide which pixels belong
to which cell because the neurites are intertwined with neu-
rites from the other two cells and with neurites from cells
the bodies of which are outside the field of view.

Several kinds of questions are of interest:

1. Morphological mining. Are there patterns in the num-
ber of neurites or how they branch? Do they taper as
they extend away from the cell body? Do they grow
longer or branch more in response to injury?

2. Protein distribution mining. Does the distribution of a
protein within the cells follow certain patterns? Why
do some neurites express much neurofilament and little
calbindin or vice versa?

3. Neuron connection mining. Are connections between
neurons related to changes in morphology or protein
distribution? Do the connections between neurons
change in response to injury?

One would like to know how the answers to these ques-
tions differ between experimental conditions (treatments,
etc.) and between different species.

The problem is not so much that such analyses are te-
dious to perform manually, but that they are nearly impos-
sible for humans to perform reliably. The fundamental rea-
son is that extracting the features that form the basis for the
analyses is inherently error prone. As a simple example, the
bottom cell in Figure 1 has at least four neurites, but it may
have as many as eight, depending on whether some neurites
belong to this cell or to another cell. The uncertainty can
sometimes be controlled—in the simple case of cell count-
ing, this is done by stringent protocols for how to count,
blinding, and multiple human counters—but this is infea-
sible in most cases. Yet, the quantitative studies that have
been done have had strong impact; see for instance Rex et
al.’s work [11] on protein expression in photoreceptors.

This paper therefore addresses probabilistic segmenta-
tion and analysis of images. It will become clear that even
though we work with horizontal cells in this paper, our ap-
proach is applicable not only to neurons elsewhere in the
brain but also to many other kinds of images. We have
previously [1] mined biomedical images in the aggregate,
extracting visual features from chunks of tissue containing
numerous cells and mining them to construct a vocabulary
of latent concepts. In a sense the present paper attacks the
problem from the opposite angle, identifying and measur-
ing single cells and their properties in order to cast light on
what the aggregate analysis cannot.

We propose, in Section 2, the first probabilistic segmen-
tation algorithm, by which we mean that the algorithm com-
putes not only a set of pixels that seem to belong to a cer-
tain cell, but also states how confident it is that each pixel

belongs to the cell. Section 3 evaluates the algorithm ex-
perimentally. Finally, in Section 4, we describe how the
probabilistic segmentation result can be used to automati-
cally measure morphological properties of the cell—a first
step in answering the questions listed above.

2 A probabilistic segmentation algorithm
Our algorithm is motivated by a simple diffusion model

of the flow of newly synthesized proteins in the cell. Con-
sider a hypothetical protein, which is produced near the cen-
ter of the cell body, then distributed throughout the cell by
diffusion. The cell body is nearly round, so the beginning
of the diffusion process is a symmetric, Brownian motion,
but assuming that the protein is not secreted through the cell
membrane, further diffusion is limited to places that are part
of the cell, i.e., the neurites. We simulate this model by a
discrete random walk, starting in the center of the cell.

An immediate problem for the simulation is that the im-
age does not tell us directly where the cell membrane is.
However, the boundary of the cell can for the most part be
inferred from the gradient of the distributions of the pro-
tein(s) being imaged by observing where the intensity in
the image drops off sharply.

The random walk consists of a large number of steps.
Each step is to one of the eight pixels neighboring the cur-
rent location in the image, chosen at random, but not uni-
formly: The decision is biased by the relative intensity of
the neighbors so that the step is more likely to be in the
direction of a bright neighbor pixel. A separate matrix of
the same dimensions as the image is updated at each step to
keep count of how many times each pixel has been visited.
Our conclusions about which pixels belong to the cell with
what probability will be based on this “visit record” matrix.

The heuristic of using the gradient of the intensity to
keep the walk within the cell works well when the cell is
surrounded by unlabeled background, but fails when a neu-
rite touches that of another cell. Such a “bridge” between
two cells is usually a thin, dim, peripheral part of a neurite,
so it is quite unlikely that the walk will stray across it, but
for a long walk this is bound to happen at some point—with
disastrous consequences for the algorithm described so far,
for it is unlikely that the walk will cross back into the origi-
nal cell, so it will keep visiting pixels in the wrong cell.

The problem can be solved by modifying the algorithm
to perform a repeated random walk. After each step an un-
fair coin is tossed, and with a small probability c the walk
returns to its original starting point before continuing. This
solves the problem of crossing into other cells because a
walk that strays into the wrong cell will soon return to the
original starting point. Because most walks will never cross
the bridge, the original cell will be visited much more than
the other.
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Figure 2. One of the cells in Figure 1, successfully
segmented by the repeated random walk algorithm.

It may appear that even crossing the bridge once and
walking around in the wrong cell for a little while is a mis-
fortune. However, this behavior is actually a blessing in
disguise. The reason is that a connection between neurites
from different cells can look quite similar to a branching
point in a neurite—so much so that human experts cannot
reliably distinguish them. If the algorithm had to make a
definite choice between staying in the original cell or cross-
ing into the other, a wrong choice would have huge impact
on the segmentation result and consequently on the analy-
sis results. The randomized solution avoids this by visiting
the region beyond the bridge proportionally to how well it
is connected to the original cell. An analysis algorithm can
recognize that there is doubt about the extent of the cell and
conclude, for instance, that there is a 0.8 and 0.2 probability
that the neurite is 30 µm and 40 µm long, respectively.

Figure 2 shows the segmentation result for one of the
cells in Figure 1. The color of each pixel corresponds to an
element in the visit record matrix, and indicates how many
times that pixel was visited by the repeated random walk.
Note that pixels farther from the center are generally visited
less. This is consistent with the diffusion model, and makes
sense from a probabilistic point of view, for a path from the
center to a pixel far away has more opportunities to make
mistakes and cross into other cells, so we can be less certain
that the pixel actually belongs to the original cell. Notice
also that the wider neurites are followed more often—again
consistent with what we expect.

The visit record matrix constitutes a graded segmenta-
tion result—pixels visited more are more likely to be part
of the cell—but how do we convert the visit counts to prob-
abilities? The mapping should be linear, but contrary to
intuition, assigning probability 1 to the pixel visited most

and probability 0 to pixels not visited at all may not be the
best mapping. The reason is twofold. First, there will be
some fluorescence even in parts of the image that do not
contain the protein intended to be imaged, because of back-
ground staining and autofluorescence. To correct for this,
we should map visits below a certain threshold to proba-
bility 0. Second, the peripheral parts of the cell body re-
ceive fewer visits than the central parts, even though we
have prior knowledge that the cell body is part of the cell.
We can correct for this by mapping visits above a certain
threshold to probability 1. (Technically, we are then com-
puting P(pixel ∈ cell | cell body ∈ cell).) The resulting ma-
trix of probabilities is called a probabilistic mask, or pmask.

2.1 Formulation as eigenvector problem
Although a simulation-based implementation of the algo-
rithm, as described above, is sufficiently efficient (5 s per
cell for a 768-by-512-pixel image), it is interesting to note
that the pmask can also be computed by solving an eigen-
vector problem. Each step of the walk can be written as

x := (1− c)Px+ cs. (1)

Here, x is the pmask, P is a (non-symmetric) transition ma-
trix, c is the restart probability, and s is a vector that indi-
cates the center of the cell (the element corresponding to the
pixel at the center of the cell is one, the rest are zero).

If the image is m× n pixels, then x and s have mn ele-
ments, and P has mn rows and mn columns.

Çamoğlu et al. [4] show that Eq. (1) converges to the
stationary probability distribution of the Markov chain with
transition matrix Q = {Qi j}, defined by

Qi j =

{
(1− c)Pi j if si 6= 1
(1− c)Pi j + c if si = 1.

(2)

At convergence, x = Qx. Because Q is column-normalized,
its largest eigenvalue is 1, so x is the corresponding eigen-
vector. The eigenvector problem can be solved quickly be-
cause P and Q are very sparse: each row has only eight non-
zero elements, corresponding to the possible next steps.

3 Experimental evaluation
We evaluate our segmentation algorithm experimentally

by comparing it to the “seeded” (or “marker-based”) wa-
tershed algorithm [14], the state of the art for this kind of
segmentation problems.

The watershed solution converts the image into a land-
scape by lowering a pixel of intensity a to a depth a units
below the ground. The brightest parts of the image thus be-
come the deepest valleys. The landscape is then modified so
that local minima occur only at the center of each cell (the
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Figure 3. The seeded watershed algorithm’s segmen-
tation result, superimposed on the original image.

foreground markers), and local maxima occur only in ar-
eas known to be outside the cell (the background markers).
The background markers were constructed by thresholding
followed by careful closing and dilation. The size of the
structuring elements for the closing and dilation was criti-
cal, and had to be selected by trial and error; with the wrong
values, the algorithm would make huge mistakes. Note that
absent an automatic method for finding background mark-
ers, the watershed algorithm is not a practical solution. In
contrast, the foreground markers, which are also used as
starting points for our repeated random walks, can be found
automatically [2].

Figure 3 shows the result of the seeded watershed algo-
rithm on the image in Figure 1. The colored areas indicate
which pixels the algorithm assigns to each of the three cells.
The original image is shown in the background as a frame
of reference. We would not expect the algorithm to pro-
duce a perfect segmentation, but it is striking that when it
does make mistakes, they are large mistakes: Long pieces
of neurites are completely missing from the lower cell, and
most of the neurite indicated by the arrow is misclassified
as belonging to the lower cell when it actually belongs to
the cell above it.

The watershed segmentation, as shown, is not very spe-
cific: Large areas of the background are assigned to the
cells. This can be remedied, however, by assuming that
pixels in the original image with intensity below a certain
threshold (i.e., low concentration of the protein being im-
aged) are not part of the cell. By increasing the thresh-
old, we can improve specificity at the expense of sensitivity.
The repeated random walk algorithm has a similar tradeoff:
Modifying the mapping from visit count to probability, as
discussed in Section 2, affects specificity and sensitivity.

In order to quantify the specificity and sensitivity of the
algorithms, we segmented two cells manually, as shown in

Figure 4. Segmentation ground truth.

Figure 5. The repeated random walk algorithm domi-
nates seeded watershed in terms of receiver operating
characteristics (ROC).

Figure 4. Even a human cannot say for certain which neu-
rites and branches belong to the cell, so we deliberately
erred on the side of including too much in the manually
segmented cells, as this leads to conservative measurements
of the algorithms’ sensitivity.

When the random walk algorithm assigned a probability
p to a pixel, we added (1− p) to the count of false negatives
and p to the count of true positives if the pixel was truly
part of the cell. Similarly, we added p to the count of false
positives and (1− p) to the count of true negatives if the
pixel was not truly part of the cell.

Figure 5 plots receiver operating characteristics (ROC)
for the two algorithms. An ideal algorithm would have a
curve that touches the top left corner of the space (perfect
sensitivity and specificity). We see that the repeated random
walk dominates the seeded watershed.
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Figure 6. We find the direction of the neurite by PCA
on a region around the point (top). PCA fails to detect
the direction of the neurite when other neurites are in
close proximity (left). However, a second repeated
random walk identifies the neurite (right).

4 Probabilistic analyses

The probabilistic nature of the segmentation result pro-
vides extra information that analysis techniques can exploit
in order to produce a more useful end result. Because of
space limitations, we only consider a simple morphological
measurement: the thickness of a neurite at a given point Q.
This is only a first step in analyzing the image, but gives
a flavor of how analysis and mining techniques must be
adapted to handle probabilistic values.

We would like to measure the thickness along a line that
is perpendicular to the neurite at Q. The first challenge is
to find this line. The local direction of the neurite can be
found by principal component analysis (PCA) [9]. Restrict-
ing our attention to a small region R around Q, we find the
coordinates of all pixels in R that have an above-average
probability of being in the cell (according to the pmask).
In most cases, the first principal component of these points
gives the direction of the neurite at Q.

This method fails, however, when there are other neurites
in close enough proximity to intersect R. Figure 6 shows an
example. The neurite we want to measure extends from the
top-left to the bottom-right corner, but interfering neurites
in the other two corners cause the direction of largest vari-
ance to be nearly perpendicular to the neurite. In order to

Figure 7. For two neurites, probabilities (from the
pmask) for each pixel along a line across the neurite.

Figure 8. The resulting probabilistic values for the
thickness of the two neurites.

avoid this problem, we apply the probabilistic segmentation
method from Section 2 a second time in order to find the
parts of the region that are most likely to be connected to Q
by tissue. The right panel of Figure 6 shows that the method
is effective at detecting the neurite of interest. PCA can now
easily find the direction of the neurite.

Once we have found the line perpendicular to the neurite,
we can read off the pmask values along the line, resulting
in a graph like the ones in Figure 7. Even equipped with
this graph, it is difficult to determine the thickness of the
neurite—either because the sides of the neurites are not very
well defined, as in the left panel of Figure 7, or because
it is not clear whether there is one neurite or two neurites
next to each other, as in the right panel. We circumvent
the problem of choosing a threshold by computing P(w),
the probability that the neurite is w pixels thick, for w ∈
{1,2,3, . . .}. The neurite is w pixels thick if, along the line,
there is a sequence of w+2 pixels such that the first and last
are not part of the cell but the remaining w pixels are. If pi
is the probability (from the pmask) that the i-th pixel in this
sequence is part of the cell, the probability that a neurite of
thickness w starts at pixel s is

P(w,s) = (1− ps−1)
s+w−1

∏
i=s

pi(1− ps+w). (3)

We can compute P(w) by trying all relevant start positions:

P(w) =
q

max
s=q−w+1

P(w,s) (4)

Only start positions from q−w + 1 to q are tried because
other start positions would only find other neurites than the
one that Q is part of.
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Figure 8 plots the P(w) functions that correspond to the
pmask values in Figure 7. The function P(w) has the same
shape as the probability density function (pdf) of the neu-
rite’s thickness (although the values on the second axis are
scaled as a result of the discrete fashion in which P(w) is
obtained), and we say that the measurement of w is a prob-
abilistic value. The probabilistic value is directly useful to
biologists because it conveys the variability in the measure-
ment. The right panel of Figure 8 indicates, for instance,
that the neurite is most likely between 2 µm and 4 µm thick,
but there is also a small possibility that it is around 7 µm
thick. The probabilistic value is even more useful in auto-
matic analysis and mining because it allows the techniques
to deal intelligently with measurements of different accu-
racy. Probabilistic values have received much recent atten-
tion in the database community because they are useful not
only for databases of images and other scientific data, but
also for databases of moving objects, sensor readings, and
historical business transactions. This work has mostly fo-
cused on building index structures that allow for efficient
search by the probabilistic values [3, 5, 6, 8].

5 Conclusion
Microscopy is the main source of data for many biologi-

cal and medical disciplines. In many kinds of micrographs,
each pixel is a quantitative measurement—e.g., of the con-
centration of a certain protein at a location in the tissue.
This opens the door for analysis and mining algorithms that
produce probabilistic values instead of a definite best guess.

We have proposed a novel algorithm for segmenting hor-
izontal cells and other objects with intertwined processes.
The algorithm assigns to each pixel a probability that the
pixel is part of the cell. We have further shown how this
segmentation can serve as a basis for automated analysis of
the morphological properties of cells.

Future work will apply the algorithm to three-
dimensional confocal micrographs, explore variations of the
random walk that avoid sharp turns, and develop mining al-
gorithms that can work on probabilistic measurements de-
rived from the pmask.

Together, probabilistic segmentation and analyses that
return probabilistic values provide a foundation for giving
quantitative answers to the questions of neuroscience—and
a bridgehead for the data mining community into the world
of microscopy-based biology.
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