Top-k Spatial Joins } Many biological questions are really spatial joins!
of Probabilistic Objects
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Examples from neuroscience:
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Spatial joins Two types of probabilistic spatial join (PSJ) queries
© Threshold PSJ:  Given two sets A and B of probabilistic
0 objects, and a score threshold tau, find all
0) pairs (a, b) in A x B such that s(a, b) = tau
)
O
) Top-k PSJ: Given two sets A and B and a natural number
k, find a set R < A x B of size k such that other
Spatial join of objects with certain extent: pairs in A x B score no higher than the lowest-
Find all pairs of red and blue points less than d apart scoring pair in R.
Each @ is either a match or not to @.




Score function

Threshold PSJ queries

Given a point a = (xa, pa) and a threshold tau, where must a
point b = (x», pv) be in order to satisfy the query?
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Used in biogeography and ecology [Nekola and White, J. Biogeography, 1999]

Attempt at an efficient solution

Store all active ——in a balanced, dynamic tree
(e.g., a red-black tree).
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Add events for intersections to keep —— ordered by In p.

Problem: Could have O(n2)
intersection events.

Plane sweep for threshold PSJ queries

Inp
0 X
\ \/
Point
inp Start Mid | End
0 | 1 X
)
Problem:
Searching all active
for each @
leads to O(mn)
time complexity.

A property of the score function saves us

[xa —x5| < %(lnp,ﬂrlanrlnk—lnr)

Leftedge: Inp=—Ax+ (InT—Inp, —InA+Ax,)
Rightedge: Inp=2Ax+ (InT—Inp, —InA —Ax,)

Slope is always A or —A

Solution: Use two trees: One for downsloping
lines and another for upsloping lines.




Time complexity

« Sort events: O(n log n) + O(m log m)
* There are O(n + m) events
— Processing a start/mid/end event: O(log n)
— Processing a point event: O(log n + k’)
« k’is the number of results for this point
+ Time complexity: O(m log m + (n + m) log n + k)
— kis total number of results
— If we assume that m =n: O(n log n + k)

Plane sweep for top-k PSJ

* Query: Find the k top-
scoring pairs.

* Plane sweep
algorithms adapt easily

— Move start and end
events as threshold

\ Threshold
(k-th best score)

increases.
+ Key to efficiency is to
find some good pairs A # remaining
early candidate pairs

— Brings the threshold up

— Prunes most of the
dataset

Search time

Search time
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Algorithm generalizes to multiple dimensions

In 2D: Pyramid instead of triangle

Experiments
Datasets (43k and 52k points) based on
horizontal cell images
Increased size synthetically (copy &
shift) up to 300 times (from 10° pairs to
1014 pairs)

Compared to NLJ and a simple divide-and-

W
conquer technique: ® olo0
— Split boxes recursively until they oo @
— can be pruned based on the threshold and Smax, s oo
or g Y [

R}

— are small enough to be joined with NLJ

....

Global scheduling of top-k PSJs

Inp Group r points into MBRs
in (x, In p)-space.
0 X
L Expected value of Smax?
. .’: : Difficult to compute, and
% % o sampling is too slow.
o ° o0 . . .
° : ° With many points in each box...
:: o Upper bound on score
(based on MBR) is a good

approximation of Smax.

New time complexity:

] ('% (log%ﬂ +prlogr+prk))

Experiments: Scalability of threshold PSJ queries
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Threshold increases faster with scheduling
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Conclusion

Probabilistic spatial joins

— Geographical information systems

— Biomedical image analysis
Technically challenging

— Score depends on not only distance, but on both probabilities

— Finding top-ranking results: spatial join and top-k query at once
Efficient algorithms

— Threshold PSJs and top-k PSJs

— Plane sweeps in O(n log n + k) time

— Global scheduling: faster top-k by finding high-scoring pairs early
Future work

— Efficient algorithms for more than 2 dimensions

— Compare experimentally to Kriegel et al. [DSFAA 2006]

This work was in part by grant no. ITR-0331697 from the National Science Foundation.
Horizontal cell micrographs were provided by Geoffrey P. Lewis from the laboratory of Steven K. Fisher at UCSB.
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Scalability of top-k PSJ queries
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