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Bipolar cells and 

synaptic terminals
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Many biological questions are really spatial joins!
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Figure 3. The seeded watershed algorithm’s segmen-
tation result, superimposed on the original image.

foreground markers), and local maxima occur only in ar-
eas known to be outside the cell (the background markers).
The background markers were constructed by thresholding
followed by careful closing and dilation. The size of the
structuring elements for the closing and dilation was criti-
cal, and had to be selected by trial and error; with the wrong
values, the algorithm would make huge mistakes. Note that
absent an automatic method for finding background mark-
ers, the watershed algorithm is not a practical solution. In
contrast, the foreground markers, which are also used as
starting points for our repeated random walks, can be found
automatically [2].

Figure 3 shows the result of the seeded watershed algo-
rithm on the image in Figure 1. The colored areas indicate
which pixels the algorithm assigns to each of the three cells.
The original image is shown in the background as a frame
of reference. We would not expect the algorithm to pro-
duce a perfect segmentation, but it is striking that when it
does make mistakes, they are large mistakes: Long pieces
of neurites are completely missing from the lower cell, and
most of the neurite indicated by the arrow is misclassified
as belonging to the lower cell when it actually belongs to
the cell above it.

The watershed segmentation, as shown, is not very spe-
cific: Large areas of the background are assigned to the
cells. This can be remedied, however, by assuming that
pixels in the original image with intensity below a certain
threshold (i.e., low concentration of the protein being im-
aged) are not part of the cell. By increasing the thresh-
old, we can improve specificity at the expense of sensitivity.
The repeated random walk algorithm has a similar tradeoff:
Modifying the mapping from visit count to probability, as
discussed in Section 2, affects specificity and sensitivity.

In order to quantify the specificity and sensitivity of the
algorithms, we segmented two cells manually, as shown in

Figure 4. Segmentation ground truth.

Figure 5. The repeated random walk algorithm domi-
nates seeded watershed in terms of receiver operating
characteristics (ROC).

Figure 4. Even a human cannot say for certain which neu-
rites and branches belong to the cell, so we deliberately
erred on the side of including too much in the manually
segmented cells, as this leads to conservative measurements
of the algorithms’ sensitivity.

When the random walk algorithm assigned a probability
p to a pixel, we added (1− p) to the count of false negatives
and p to the count of true positives if the pixel was truly
part of the cell. Similarly, we added p to the count of false
positives and (1− p) to the count of true negatives if the
pixel was not truly part of the cell.

Figure 5 plots receiver operating characteristics (ROC)
for the two algorithms. An ideal algorithm would have a
curve that touches the top left corner of the space (perfect
sensitivity and specificity). We see that the repeated random
walk dominates the seeded watershed.

[Geoff Lewis; Mark Verardo]

Horizontal cells

Examples from neuroscience:

Horizontal cells are hard to segment
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Uncertain extent: 
We are not sure 

which pixels belong 

to the cell

Probabilistic mask of one horizontal cell
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This point 

(pixel) is less 

likely to belong 

to the cell

This point 

(pixel) is more 

likely to belong 

to the cell

[Ljosa and Singh, ICDM 2006]

How do we 
perform a spatial 

join of such 
cells?

Spatial joins
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d

Spatial join of objects with certain extent:
Find all pairs of red and blue points less than d apart

Each      is either a match or not to     .

Two types of probabilistic spatial join (PSJ) queries

6

Threshold PSJ:

Top-k PSJ:

Given two sets A and B of probabilistic 
objects, and a score threshold tau, find all 
pairs (a, b) in A x B such that s(a, b) ! tau

Given two sets A and B and a natural number 
k, find a set R ⊆ A x B of size k such that other 

pairs in A x B score no higher than the lowest-
scoring pair in R.



Score function

s′(pa, !xa, pb, !xb) = pa pb λe−λd( "xa, "xb)

〈pb, !xb〉
〈pa, !xa〉

Joint probability that point A belongs to the red 

cell and point B belongs to the blue cell 

Score function

s′(pa, !xa, pb, !xb) = pa pb λe−λd( "xa, "xb)

〈pb, !xb〉
〈pa, !xa〉

Joint probability that point A belongs to the red 

cell and point B belongs to the blue cell 

Distance between

point A and point B

d(!aa, !xb)

Used in biogeography and ecology [Nekola and White, J. Biogeography, 1999]

Threshold PSJ queries
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x

ln p

0

Given a point a = (xa, pa) and a threshold tau, where must a 
point b = (xb, pb) be in order to satisfy the query?

pa pb λe−λd("xa,"xb) ≥ τ

ln p = ln τ − ln pa − lnλ

|xa − x| ≤ 1
λ

(ln pa + ln p + lnλ− ln τ)

xa xa +
1
λ

(ln pa + lnλ− ln τ)

Very important equivalence: s′ ≥ τ ⇔ ∈

Plane sweep for threshold PSJ queries
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ln p

0 x

ln p

0 x

Start Mid End

Point

Problem:

Searching all active

             for each    

leads to O(mn)

time complexity.

Attempt at an efficient solution
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Store all active          in a balanced, dynamic tree

(e.g., a red-black tree).

Add events for intersections to keep           ordered by ln p.

Problem: Could have O(n2) 

intersection events.

A property of the score function saves us
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Left edge:

Right edge:

Slope is always " or –"

Solution: Use two trees: One for downsloping 
lines and another for upsloping lines.



Time complexity
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• Sort events: O(n log n) + O(m log m)

• There are O(n + m) events

– Processing a start/mid/end event: O(log n)

– Processing a point event: O(log n + k’)

• k’ is the number of results for this point

• Time complexity: O(m log m + (n + m) log n + k)

– k is total number of results

– If we assume that m = n: O(n log n + k)

Algorithm generalizes to multiple dimensions
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In 2D: Pyramid instead of triangle

Plane sweep for top-k PSJ
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Search time

Threshold

(k-th best score)

# remaining

candidate pairs

• Query: Find the k top-
scoring pairs.

• Plane sweep 
algorithms adapt easily

– Move start and end 

events as threshold 

increases.

• Key to efficiency is to 
find some good pairs 
early

– Brings the threshold up

– Prunes most of the 

dataset

Search time

Global scheduling of top-k PSJs
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Group r points into MBRs
in (x, ln p)-space.

Expected value of smax?

Difficult to compute, and 

sampling is too slow.

Upper bound on score 
(based on MBR) is a good 
approximation of smax.

ln p

0 x

With many points in each box…

New time complexity:

Sorting Pruning rate

Experiments
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Compared to NLJ and a simple divide-and-
conquer technique:

– Split boxes recursively until they

– can be pruned based on the threshold and smax, 

or

– are small enough to be joined with NLJ

Datasets (43k and 52k points) based on 
horizontal cell images

Increased size synthetically (copy & 
shift) up to 300 times (from 109 pairs to 
1014 pairs) 

Experiments: Scalability of threshold PSJ queries
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Threshold increases faster with scheduling
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Scalability of top-k PSJ queries
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Conclusion
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Probabilistic spatial joins

– Geographical information systems

–#Biomedical image analysis

Technically challenging

– Score depends on not only distance, but on both probabilities

– Finding top-ranking results: spatial join and top-k query at once

Efficient algorithms

– Threshold PSJs and top-k PSJs

– Plane sweeps in O(n log n + k) time

– Global scheduling: faster top-k by finding high-scoring pairs early

Future work

–#Efficient algorithms for more than 2 dimensions

– Compare experimentally to Kriegel et al. [DSFAA 2006]


