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Abstract— Probabilistic data have recently become popular
in applications such as scientific and geospatial databases. For
images and other spatial datasets, probabilistic values can capture
the uncertainty in extent and class of the objects in the images.
Relating one such dataset to another by spatial joins is an
important operation for data management systems.

We consider probabilistic spatial join (PSJ) queries, which
rank the results according to a score that incorporates both
the uncertainties associated with the objects and the distances
between them. We present algorithms for two kinds of PSJ
queries: Threshold PSJ queries, which return all pairs that score
above a given threshold, and top-k PSJ queries, which return the
k top-scoring pairs.

For threshold PSJ queries, we propose a plane sweep algorithm
that, because it exploits the special structure of the problem, runs
in O(n (log n + k)) time, where n is the number of points and k
is the number of results. We extend the algorithms to 2-D data
and to top-k PSJ queries. To further speed up top-k PSJ queries,
we develop a scheduling technique that estimates the scores at
the level of blocks, then hands the blocks to the plane sweep
algorithm. By finding high-scoring pairs early, the scheduling
allows a large portion of the datasets to be pruned. Experiments
demonstrate speed-ups of two orders of magnitude.

I. INTRODUCTION

In its basic form, a spatial join is a query which, given a set
of red points and a set of blue points, finds all pairs consisting
of one red and one blue point within a certain distance of each
other. Such queries have been studied extensively, and many
efficient techniques exist for answering them [1], [2], [3], [4],
[5], [6]. A new look at spatial joins is mandated, however, by
the large geographical and biomedical image datasets that are
becoming available.

The interesting feature of these datasets is not that they
contain many objects, but that the objects are probabilistic
in nature. For instance, satellite imagery is being annotated
both by automated systems and by unreliable humans: Ma-
chine learning applications recognize airports, golf courses,
residential areas, different crops, and other land uses, and
community-based systems like Wikimapia allow anyone to
annotate regions. Both lead to large numbers of annotations,
but of varying quality: Some objects are accurately annotated,
whereas many others are not. The accuracy of an annotation is
approximated by the segmentation algorithm and/or classifier
(for an automated system) or from a reputation network (for
a community-based system).

As a second example of probabilistic spatial datasets,
consider annotations of biomedical images. Microscopy is
the main source of data for many fields of biology. New,
high-throughput microscopes are producing images much
faster than before; in addition, emerging databases of mi-
crographs [7], [8], [9] make it possible for the first time
to analyze large collections of existing images. The size of
the datasets rules out the traditional approach of identifying
objects and relationships manually. Instead, we must rely on
automatic techniques. It is often impossible to interpret the
image unequivocally, but analysis techniques can manage the
uncertainty by producing probabilistic values for the extent
and class of the objects identified. This gives subsequent
analysis steps more information to work with, and thus a better
chance of gaining new biological insight [10].

How do probabilistic datasets change the nature of spatial
joins? First of all, not all result pairs are equally desirable:
A pair consisting of a high-confidence red point and a high-
confidence blue point is more important than a pair of low-
confidence points. Add to this that the datasets generally have
many low-confidence points and few high-confidence points,
and it becomes clear that the spatial join is a form of top-k
query: Given two sets of probabilistic points, find the k top-
scoring pairs according to a ranking function that takes into
account the confidence values of the points (and perhaps also
the distance between them).

In the examples above, the probabilistic objects are points
with deterministic position; what is probabilistic is their class.
For example, the satellite imagery classifier could say that
it is 80 % certain that the object at 34◦26′N 119◦50′W is an
airport, but leave no doubt that there is something at exactly
that location. Representing an object as a point is acceptable
when the uncertainty in position and extent of the object is
small compared to the distances between objects. However,
for many real datasets this is not the case, so the extent
of the object is also probabilistic—perhaps derived from a
probabilistic segmentation [10]. As an example, the uncertain
extent of a horizontal cell is shown in Figure 1. To be widely
useful, a spatial join method for probabilistic datasets should
handle uncertainty both in class and extent.

This paper studies spatial joins on probabilistic datasets.
Spatial joins are a natural next step in the progression of
database and data mining techniques that have been devel-
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Fig. 1. Probabilistic mask representing uncertainty in a horizontal cell’s
extent. Darker pixels have higher probability of belonging to the cell. A second
source of uncertainty is the class of the cell: A classifier could decide, for
instance, that there is a 70 % probability of this cell being a B-type horizontal
cell.

oped over the last few years: Probabilistic network analy-
sis [11], range and k-NN queries [12], [13], [14], [15], top-
k queries [16], equality queries [17], segmentation [10], and
clustering [18] techniques have started to appear, motivated by
the desire to find patterns that have so far eluded discovery in
protein interaction, moving object, sensor, and image data.

This paper makes the following major contributions:
• Query definitions. We define threshold spatial joins and

top-k spatial joins of objects with probabilistic extent.
• Spatial join algorithms for probabilistic points. By ex-

ploiting the geometry of the problem and the score
function, we can escape the curse of O(n2)-time join and
compute a threshold spatial join of 1-D or 2-D datasets
in O(n(logn+k)) time, where n and k are the number of
points and results, respectively.

• Predictive scheduling. Although the geometry-based join
algorithm extends to top-k probabilistic spatial join, it is
beneficial to find good matches early so most of the re-
maining data can be pruned. Our index-based scheduling
algorithm predicts high-scoring pairs of pages, then calls
the geometry-based algorithm to join them.

The rest of the paper is organized as follows. Section II
defines the problem and query types. Section III presents
our geometry-based algorithm for threshold spatial joins of
probabilistic datasets. Section IV extends the algorithm to
top-k probabilistic spatial joins and develops the index-based
scheduling technique. Section V evaluates the algorithms
experimentally. Section VI discusses related work before Sec-
tion VII concludes the paper.

II. PROBLEM STATEMENT

What kind of spatial joins must a database support in order
to be able to help in biomedical and geographical applications?

First, objects often cannot be segmented reliably. We must
therefore work with probabilistic values of the objects’ extents,
i.e., probabilistic masks [10] (see Figure 1 for an example).

Definition 1 (from [10]): A probabilistic mask Ma for an
object a is a set of tuples {〈~x, p〉} such that each point ~x
belongs to a with probability p.

Second, even after segmentation, the objects cannot be
identified reliably. Our technique must therefore work with
confidence values. A confidence value is the classifier’s esti-
mate of the probability that the object belongs to the class.

Definition 2: A probabilistic object a is a pair 〈Ma, pa〉,
where Ma is a’s probabilistic mask and pa is the confidence
value of a’s class.

Third, it is not clear how close two objects must be in order
to constitute a pair of interest. Rather than only including
pairs within a certain distance, we should therefore incorporate
the distance in our ranking function so that two objects that
are closer together are ranked higher (other things equal).
We adopt a similarity measure that decays exponentially with
increased distance. This mapping is appealing because of
its simplicity and because it is sensitive to small variations
in small distances. It has been validated for applications in
cognitive science, biogeography, and ecology [19], [20].

We can now derive an appropriate score function for ranking
pairs of objects. First, consider two point objects a and b
with exactly known location, but with probabilities pa and
pb of belonging to their respective classes. Their probabilistic
masks have only one point. Because it is the only point, its
probability of belonging to the object must be one. In other
words, Ma = 〈~xa,1〉, and similarly for b. It is now clear that
the score function for a pair of point objects 〈a,b〉 with known
location should be a monotonely increasing function of their
confidence values (pa and pb) and the inverse exponential of
their distance. Because these are all non-negative, we choose
their product as our score function.

Definition 3: The score s′ between two point objects a =
〈〈~xa,1〉, pa〉 and b = 〈〈~xb,1〉, pb〉 is

s′(pa,~xa, pb,~xb) = pa pb λe−λd(~xa,~xb), (1)

where λ is a positive, domain-specific parameter that deter-
mines the relative importance of probability and distance, and
d is a suitable distance function.

The fourth and last requirement concerns the score between
objects that are not single points: The distance that is important
is the smallest distance between two pixels that with high
probability belong to objects a and b, respectively. It is not
important that there are many other high-probability pixels that
belong to the two objects, but are farther apart. The simplest
way to satisfy this requirement is to define the score between
two objects as the maximum of all scores between constituent
points, weighted by the probability that both points belong to
their respective objects:

Definition 4: The score s(a,b) of a pair of objects a =



〈Ma, pa〉 and b = 〈Mb, pb〉 is

s(a,b) = max
〈~xa,qa〉∈Ma
〈~xb,qb〉∈Mb

pa pb s′(qa,~xa,qb,~xb) (2)

=pa pb max
〈~xa,qa〉∈Ma
〈~xb,qb〉∈Mb

qa qb λe−λd(~xa,~xb).

This object-level score function—or variations, such as the
90th percentile of the point-level scores between the two
objects—can easily be used in concert with any technique
designed for point-level scores (Definition 3). To simplify
the presentation, the algorithms in this paper are therefore
presented in terms of the point-level score function.

We can now proceed to define two kinds of useful PSJ
queries.

Definition 5: Given two sets A and B of probabilistic ob-
jects and a score threshold τ, a threshold probabilistic spatial
join query (“threshold PSJ query”) finds all pairs 〈a,b〉 ∈
A×B such that s(a,b)≥ τ.

Definition 6: Given two object sets A and B and a natural
number k, a top-k probabilistic spatial join query (“top-k
PSJ query”) finds a set R ⊆ A×B of size k such that other
pairs in A×B score no higher than the lowest-scoring pair in
R.

These general query types have many applications. Neu-
roscientists want to know, for instance, whether the axons
of bipolar cells in the retina extend in order to maintain
the connection to the photoreceptor synaptic terminals [21],
whether Müller cells hypertrophy toward macrophages [22],
and whether proliferating horizontal cell dendrites grow to-
ward subretinal glial scars [23]. All of these questions translate
naturally into spatial joins.

III. THRESHOLD PROBABILISTIC SPATIAL JOIN

Now that we have defined threshold PSJ queries, we can
discuss algorithms for answering them. The basic solution is
a nested loop join, which computes the scores between every
object in A and every object in B and checks whether it exceeds
τ. If A and B contain n and m points, respectively, this takes
O(nm) time, which precludes datasets of even moderate size.
Our algorithm exploits the geometry of the score function to
find the solution more efficiently.

We first present our algorithm for 1-D data (i.e., probabilis-
tic points on a line). Then we extend it to 2-D data.

A. Threshold Probabilistic Spatial Join in 1D

For a point a = 〈xa, pa〉 ∈ A, what can we say about where
a corresponding point b = 〈xb, pb〉 must be in order to yield a
score of at least τ? From the score function, we have that

pa pb λe−λ|xa−xb| ≥ τ (3)

and, consequently, that

|xa− xb| ≤
1
λ

(ln pa + ln pb + lnλ− lnτ) . (4)

Fig. 2. Each point a = 〈xa, pa〉 defines a triangle. The score between two
points a and b = 〈xb, pb〉 exceeds the threshold τ only if b is inside a’s triangle.
See Ineq. (4).

In a plot with x on the first axis and ln p on the second,
Ineq. (4) describes an inverted triangle. The left and right side
are 2(ln pa + lnλ− lnτ)/λ apart at ln p = 0 (which corresponds
to p = 1, the highest probability any point can have). They
eventually meet at x = xa and ln p = lnτ− ln pa− lnλ. Figure 2
shows an example of such a triangle.

Our algorithm is a plane sweep algorithm that slides (con-
ceptually) a vertical line from x =−∞ to x = ∞. It maintains
a data structure of all the triangles currently intersecting the
sweep line. When the sweep line meets a point 〈xb, ln pb〉 ∈ B,
we search the data structure for all triangles in which the
point is contained. Graphically, this can be done by following
the x = xb line from 〈xb, ln pb〉 toward 〈xb,−∞〉; for any
line segment we intersect on the way, we know that the
corresponding a scores high enough together with b, so the
pair 〈a,b〉 can be added to the result set.

The time complexity of this search operation is critical. In
the worst case, there are n triangles in the data structure at the
same time, and we perform one search for each point in B, so
the search operation must be sublinear in order to avoid O(nm)
complexity. Insertion and deletion must also be sublinear in
order to avoid quadratic complexity in n.

For arbitrary triangles, this seems to be a tall order. Bentley
and Ottmann’s algorithm [24] comes close by maintaining
a balanced binary tree of the segments that are currently
intersecting the sweep line. In order to keep the tree sorted,
however, two neighboring segments in the tree must be
swapped when they intersect—and in the worst case, every
triangle can intersect with every other. That is no problem
for Bentley and Ottmann’s purpose, which is precisely to find
line segment intersections, but for our application, O(n2) time
complexity from intersection processing is a show stopper.

The key to a better solution is the slope of the line segments
that make up our triangles. From Ineq. (4), we see that the
left and right edges of the triangle (which we call La and Ra,
respectively) are the lines defined by

La: ln p =−λx+(lnτ− ln pa− lnλ+λxa) (5)

and

Ra: ln p = λx+(lnτ− ln pa− lnλ−λxa), (6)



respectively. The slopes of these lines are always −λ and λ.
They do not depend on pa or xa, only on the constant λ.

This insight does not help Bentley and Ottmann’s algorithm,
which can still encounter O(nm) intersections. But what if
we keep two trees, one for downsloping segments and one
for upsloping segments? Then the segments in each tree are
parallel, and there is never a need to reorder segments.

Our join algorithm for 1-D points incorporates this idea,
and is shown in Figure 3. The algorithm starts by initializing
the event queue: A Point event is added for each point in B,
and for most points in A, we add a Start, Mid, and End event.
A point a in A is skipped, however, if

1
λ

(ln pa + lnλ− lnτ) < 0, (7)

for in that case, pa is so low that no point from b can
possibly yield as score of τ or more. The x-coordinates of
the Start and End events are computed by subtracting and
adding, respectively, the right side of Ineq. (4) from xa. The
x-coordinate of the Mid event is simply xa.

In the main event loop, the algorithm responds to Start, Mid,
and End events by inserting a segment into and/or removing
a segment from the two trees. At any time, all downsloping
segments intersected by the sweep line are present in T−λ,
and all upsloping segments intersected by the sweep line are
present in Tλ. The key for each entry in the tree is the x-
coordinate of the segment’s intersection point with the ln p = 0
axis. In addition, each entry contains the identifier of the point
in A it corresponds to.

When the algorithm encounters a Point event for a point
b, it first computes the two lines (slope ±λ) that intersects
b. It then finds their intersections xleft and xright with the
ln p = 0 axis. Finally, it searches the two trees. In T−λ (the
tree of downsloping segments), it finds all entries with keys
not exceeding xleft. The points they refer to are paired with b
and reported as results. Similarly, Tλ is searched for all entries
with keys of xright or greater.

The algorithm uses O(n + m) space, but what is its time
complexity? Sorting the events is O(n logn) and there are
O(n + m) events to process. Processing an event is either
O(logn) (for Start, Mid, and End events) or O(logn + k)
(for Point events). (Here, k is the number of results—for
threshold PSJ queries an unavoidable cost.) In summary, the
time complexity of our algorithm is O((n+m)(logn+k))—or,
if n = m, O(n(logn+ k)).

The following theorems prove that the algorithm finds a pair
if and only if its score is at least the threshold.

Theorem 1 (Completeness): If a∈ A, b∈ B, and s(a,b)≥ τ,
then 〈a,b〉 is in the result of the 1-D plane sweep algorithm.

Proof: Suppose s ≥ τ and assume (without loss of
generality because the other case is symmetric) that xb ≥ xa.
It follows from Ineq. (4) that

ln pb ≥ λxb +(lnτ− ln pa− lnλ−λxa), (8)

which means (see Eq. (6)) that b is above Ra, the line that
is the right side of a’s triangle. Because pb is a probability,

it cannot exceed 1, so xb ≤ xright, where xright is where Ra
intersects the ln p = 0 line. Because xa ≤ xb ≤ xright, we know
that at the time the plane sweep algorithm receives b’s Point
event, it will have already processed a’s Mid event and not yet
seen a’s End event, so Rb is in Tλ. Consequently, a is in Tλ

(the tree of upsloping line segments) and in the result of the
query Tλ.range(x right, ∞), and 〈a,b〉 is returned as a result.

Theorem 2 (Soundness): If 〈a,b〉 is in the result of the 1-D
plane sweep algorithm, then a ∈ A, b ∈ B, and s(a,b)≥ τ.

Proof: If the algorithm returns 〈a,b〉, then a must
be returned by one of the queries T−λ.range(-∞,x left) and
Tλ.range(x right, ∞). Assume that it is in the second query (the
other case is symmetric). Then xa ≤ xb ≤ xend and Ineq. (8)
holds. It follows by Eq. (4) that s≥ τ.

B. Threshold Probabilistic Spatial Join in 2D

The plane sweep algorithm can be adapted to probabilistic
points in the plane if the distance metric is L1. We write out
~xi as 〈xi,yi〉. The score function then becomes

s = pa pb λe−λ(|xa−xb|+|ya−yb|), (9)

so

lns = ln pa + ln pb + lnλ−λ|xa− xb|−λ|ya− yb|. (10)

In (x,y, ln p)-space, we have a pyramid instead of a triangle for
each point a in A. The base of the pyramid (a square) is in the
xy-plane, and the sides of the base make 45◦ angles with the
x and y axes. The four triangular sides meet at a point with x
and y coordinates equal to those of a, and with

ln p = lnτ− ln pa− lnλ. (11)

We refer to the four sides as quadrants Q1–Q4, starting
northeast of 〈xa,ya〉 and going counterclockwise. The sides
are in planes described by the following four equations:

Q1 : ln p = lnτ− ln pa− lnλ+λ(x− xa)+λ(y− ya) (12)
Q2 : ln p = lnτ− ln pa− lnλ−λ(x− xa)+λ(y− ya) (13)
Q3 : ln p = lnτ− ln pa− lnλ−λ(x− xa)−λ(y− ya) (14)
Q4 : ln p = lnτ− ln pa− lnλ+λ(x− xa)−λ(y− ya) (15)

Because all Q1 planes are parallel, each can be represented by
a single number G1(xa,ya, pa), and they can be kept in sorted
order. (Likewise for Q2–Q4.) As Gi, we choose the intersection
point between the plane and the (log p)-axis, which can be
computed by setting xi = yi = 0 in Eq. (12). For Q1 (the other
quadrants are similar):

G1(xa,ya, pb) = lnτ− ln pa− lnλ+λ(−xa)+λ(−ya) (16)

Two points a ∈ A and b ∈ B yield a score of at least the
threshold τ if and only if b is contained in a’s pyramid. We can
find all pyramids that contain b by starting at b and following
the x = xb∧ y = yb line away from the xy-plane, reporting all
pyramid sides we encounter. This is equivalent to computing
the intersection point Hi(xb,yb, pb) between the (ln p)-axis and



Algorithm THRESHOLD-PSJ(A, B, λ, τ)
q ← make-event-queue(A, B, λ, τ)
while q.size > 0:

e ← q.pop()
if e.type = Point:

b ← e.point
x left ← b.x + ln b.p /λ

if x left ≤ b.x:
x right ← b.x − ln b.p /λ

for (x, id) in T−λ.range(−∞, x left):
report result (id, b.id)

for (x, id) in Tλ.range(x right, ∞):
report result (id, b.id)

else:
a ← e.point
d ← (1/λ) * (ln a.p + ln λ− lnτ)
x left ← a.x − d
x right ← a.x + d
case type(e):

Start:
T−λ.insert(x left, a.id)

Mid:
T−λ.delete(x left, a.id)
Tλ.insert(x right, a.id)

End:
Tλ.delete(x right, a.id)

Function MAKE-EVENT-QUEUE(A, B, λ, τ)
q.events ← array of |A|+ |B| events
q.size ← |A|
j ← 0
for a in A:

d ← (1/λ)(ln a.p + lnλ− lnτ)
if d < 0: /* τ too high for a match to be possible */

q.size ← q.size −1
else:

q.events[j] ← Event(Start, a, a.x − d)
q.events[j + 1] ← Event(Mid, a, a.x)
q.events[j + 2] ← Event(End, a, a.x + d)
j ← j + 3

for b in B:
q.events[j] ← Event(Point, b, x b)

q.events ← q.events[0..(n +|B|− 1)]
sort q.events by x
q.next ← 0
return q

Function POP(q)
q.next ← q.next +1
q.size ← q.size −1
return q.events[q.next −1]

Fig. 3. Our join algorithm for 1-D probabilistic points avoids quadratic time
complexity by maintaining two trees, one for each possible slope.

Fig. 4. The point is inside the lower pyramid, but a direct adaptation of the
1-D plane sweep algorithm finds the Q1 plane of the upper pyramid as well.

the plane that goes through b and is parallel with Gi, then
finding every Qi-plane the Gi of which is no more than Hi.
For quadrant Q1, the corresponding function H1 is

H1(xb,yb, pb) = ln p−λxb−λyb. (17)

The challenge is how to find the correct pyramid sides. In
1D, this was not an issue because the plane sweep ensured
that only the relevant segments were in the trees. In 2D,
however, planes at some other y position can cause false
positives. As an example, Figure 4 shows two pyramids and
a point b. The pyramids are identical but translated in the y-
direction. The point is inside the lower pyramid, directly under
its Q1 face. What happens in the example if we directly adapt
the algorithm developed in the previous section? Suppose we
keep a balanced binary tree (e.g., a red-black tree) for each
quadrant and search the tree of Q1-planes for G1(xa,ya, pa)≤
H1(xb,yb, pb). We find the lower pyramid, which is correct,
but also the upper pyramid, which is not.

The essence of the problem is that the second plane we
find is a superset of the Q1-face of the upper pyramid. The
plane is only valid in the first quadrant of the pyramid (i.e.,
where x > xa and y > ya), but we find that plane for a point
that is elsewhere. False positives such as these can be avoided
by checking, every time we find a plane, whether our point is
in the proper quadrant of the pyramid the plane came from.
Such a check can lead to performance problems, however: In
the worst case, there could be n pyramids in the trees, and for
each point we could end up checking all of them, resulting in
O(nm) time complexity.

A better solution is to replace the red-black tree with a data
structure that allows us to incorporate the quadrant check in
the search predicate. For each plane we store three numbers:
its intersection point Gi(xa,ya, pa) with the (log p)-axis, and
the x and y-coordinates of its corresponding point from A.
When we encounter a point 〈xb, log pb〉 from B, we perform
a range query on the data structure that contains Q1 planes
for all planes that satisfy the following predicate (the other
quadrants are analogous):

G1(xa,ya, pb)≤ H1(xb,yb, pb)∧ ya ≥ yb∧ xa ≥ xb. (18)

This approach can be extended beyond two dimensions.



Like other plane sweep algorithms, it is unlikely to perform
well on very high-dimensional datasets.

Because we need insert, delete, and search to be sublinear in
n, we adopt the skip quadtree [25], which performs insert and
delete in O(logn) time and search in O(logn+k) time for data
of any dimensionality. It follows that the time complexity for
the 2-D plane sweep is the same as that of 1-D plane sweep,
i.e., O((n+m)(logn+ k)).

The following theorems proves that the 2-D plane sweep
algorithm finds a pair if and only if its score is at least the
threshold.

Theorem 3 (Completeness): If a∈ A, b∈ B, and s(a,b)≥ τ,
then 〈a,b〉 is in the result of the 2-D plane sweep algorithm.

Proof: Suppose s ≥ τ and assume (without loss of
generality because the other three cases are analogous) that
xb ≥ xa and yb ≥ xa. By Eq. (10),

ln pa + ln pb + lnλ−λxb +λxa ≥ lnτ, (19)

e so G1(xa,ya, pa)≤H1(xb,yb, pb), and Ineq. (18) is satisfied.
Because a’s Q1-plane is in the tree when the sweep line
reaches x = xb (same reasoning as the 1-D case), 〈a,b〉 is
included in the result.

Theorem 4 (Soundness): If 〈a,b〉 is in the result of the 2-D
plane sweep algorithm, then a ∈ A, b ∈ B, and s(a,b)≥ τ.

Proof: If the algorithm returns 〈a,b〉, then a must be
returned by one of the four queries. Assume that it is returned
by the query for the first quadrant (see Ineq. 18). By Eqs. (10),
(16), and (17), s(a,b)≥ τ.

IV. TOP-K PROBABILISTIC SPATIAL JOINS

In Section III, we have discussed techniques for answering
threshold spatial joins on probabilistic datasets. In this section,
we consider top-k spatial join queries, which are more useful
than their threshold counterparts, but more difficult to answer.

The basis for top-k spatial joins is that each pair in the
join result has a score. The score depends on the probabilities
of the two points as well as the distance between them (see
Eq. (1)). The pairs can be ranked by their scores, and in most
cases only the highest-scoring pairs are of interest. If we know
an appropriate threshold value, we can use the algorithm for
threshold PSJ, but in general this is not the case.

A. Plane sweep algorithm for top-k

Our plane sweep algorithm for threshold queries can be
adapted to answer top-k queries. The threshold is initialized to
a small positive value (e.g., 10−6), which remains unchanged
until k results have been found. Then, after each new result, the
threshold is updated to the score of the k-th best result found
so far. Note that the threshold is monotonically nondecreasing.

The effect of a change in threshold is to shrink all triangles.
From Eqs. (5) and (6), we have that

xleft =xa +
1
λ

(lnτ− ln pa− lnλ) (20)

and

xright =xa−
1
λ

(lnτ− ln pa− lnλ) , (21)

so when τ increases by ∆τ, xleft and xright move right and left,
respectively, by

1
λ

ln
τ+∆τ

τ
.

The bottom of the triangle, at x = xa and

ln p = lnτ− ln pa− lnλ, (22)

moves upward by ln[(τ+∆τ)/τ].
Adjusting the Start and End events in the queue to account

for this shrinkage is a complex affair because one must
account for which line segments are already in the index
structure. Notice, however, that the shrinking of the triangles
is equivalent to shifting them upward by ln[(τ + ∆τ)/τ]—or,
equivalently, by shifting the points in B downward by the same
amount! Therefore, when the threshold increases, we simply
increase an offset variable, the value of which is subtracted
from the (ln p)-dimension whenever a Point event is processed.

When the threshold increases, the remaining number of
candidate pairs generally decreases because a pair may score
above the old threshold but below the new threshold.

This adapted plane sweep algorithm works, but its perfor-
mance depends on the order in which results are found. If some
high-scoring pairs happen to be found early, the threshold will
increase beyond the scores of most pairs, and so they will be
pruned by the plane sweep. Conversely, if the good pairs are
not found until late in the search, we end up considering many
pairs that will not be in the final result.

B. Global scheduling algorithm

We have developed a global scheduling technique for find-
ing good pairs early. We start by partitioning each point set
into a number of subsets so that there are approximately r (a
parameter) points in each subset and the points in a subset
have similar spatial coordinates and probabilities. We write Ai
for the i-th subset of A and A for the set of all subsets of
A. We then make global scheduling decisions based on the
minimum bounding rectangles (MBRs) of these subsets.

The scheduling algorithm works incrementally, by repeat-
edly deciding which pair of MBRs to join next. The next
pair of MBRs to join should be the one that has the highest
likelihood of yielding at least one pair of points that scores
above the current threshold. We should aim to find the two
MBRs Ai ∈ A and Bi ∈ B such that

smax(Ai,Bi) = max
a∈Ai

max
b∈Bi

pa pb λe−d(~xa,~xb) (23)

is maximized. The score distribution for a pair of MBRs is
difficult to compute, however, for several reasons. First, we
do not know how the points are distributed in space or in
probability. Second, even if we assume that the points are
distributed uniformly within the MBRs, we cannot find a
closed-form solution, but must resort to sampling the MBRs,
which is too time consuming.
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Fig. 5. The effect of increasing the number of points in each MBR is to
increase the magnitude of the (negative) shape parameter κ of the extreme
value distribution that approximates the maximum score, smax. When there
are many points, the distribution becomes extremely left-skewed, so the upper
bound of the score between two MBRs is a good approximation of smax.

The fact that a pair of MBRs represents a very large number
of point pairs comes to our rescue, however. Because smax is
the maximum of many terms, it can be approximated well by
a generalized extreme value distribution (EVD) with pdf of
the form (see [26, p. 64])

f (s;κ,µ,σ) =
1
σ

e−(1+κ
s−µ

σ )−1/κ
(

1+κ
s−µ

σ

)−1−1/κ

, (24)

where µ is the mean, σ is the standard deviation, and κ is
a shape parameter. Because the points are constrained by
the MBR boundaries, their score distribution also has finite
domain. Consequently, the EVD is a Weibull-type (or type
III) EVD, and the shape parameter κ in Eq. (24) is negative.
The cdf is then (see [26])

F(s;κ,µ,σ) = e−(1+κ
s−µ

σ )−1/κ

. (25)

When the number of points in each MBR (and thus the number
of terms to maximize over) increases, the shape parameter
κ decreases, the distribution becomes more left-skewed, as
shown in Figure 5. The upper bound sub for the scores between
two boxes is therefore a good approximation of smax when
there are many points in each box. This increasingly becomes
the case as the datasets grow—which is precisely when we
need our scheduling to be effective.

The upper bound sub can be found by plugging the maxi-
mum probabilities of the two MBRs and the minimum distance
between them into Eq. (1). In addition to scheduling, the upper
bound is also used for pruning: If the upper bound for a pair of
MBRs is below τ, we can prune the pair without even looking
at the points they contain.

In conclusion, we order our joins by sub. The MBRs
are constructed by repeatedly splitting the dimension with

Algorithm TOPK-PSJ-SCHEDULING(A, B, λ, r)
τ← 10−6

A ← VAMSPLIT(A, R)
B ← VAMSPLIT(B, R)
for i from 0 below |A |:

for j from 0 below |B|:
dlb← minimum distance between MBRs Ai and B j

sub ← Ai.max p × B j.max p × λ× e−λdlb

estimate[i|B|+ j]← 〈i, j,sub〉
sort “estimate” array by sub
for 〈i, j,sub〉 in estimate:

if sub < τ:
terminate

join Ai and Bi, updating result set and τ as appropriate

Fig. 6. Our scheduling algorithm.

the highest variance (as when constructing a VAMsplit R-
tree [27]). We compute sub for all pairs of MBRs from the
two datasets. These values are then sorted, and we start to
join MBR pairs in decreasing order of their upper bounds.
The algorithm, which is shown in Figure 6, terminates when
the next sub is below the current threshold. The scheduling
algorithm terminates when all remaining pairs of MBRs have
been processed or pruned.

If each MBR has r points, sorting the MBR pairs takes

O
(nm

r2 log
nm
r2

)
(26)

time. If the pruning ratio is ρ, then ρnm/r2 MBR pairs must be
joined, at a cost of O(r logr + rk) each. The total complexity
is therefore

O
(nm

r2

(
log

nm
r2 +ρr logr +ρrk

))
. (27)

In our experiments, the pruning rate is at the order of 10−10,
so for large datasets, the running time is dominated by
sorting. Thus, we expect that absolute running time can be
improved by first finding some of the best pairs by Hoare’s
Find algorithm [28] or another selection algorithm, thereby
increasing the threshold to a level where most of the MBR
pairs can be pruned. We did not pursue this approach.

C. A Space Partitioning Algorithm

As an alternative to the plane sweep algorithms, we examine
a divide-and-conquer (D&C) method. The method can be used
both for threshold PSJs and top-k PSJs.

Given two MBRs Ai and B j, the algorithm first checks
whether they can be pruned based on their sub. If not, each
MBR is split into 2d quadrants (where d is the number of di-
mensions, including the probability dimension), and processes
each pair of quadrants recursively. When there are only a few
points left, the subdivision stops, and a nested loop finishes
the join.
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Although its worst-case performance is not ideal, the algo-
rithm works for any Lp distance metric, and its performance
is good for small datasets.

V. EXPERIMENTAL EVALUATION

This section evaluates our algorithms through experiments
on real data. All experiments were run on a computer with
Intel Pentium D 3.2 GHz CPU, 2 MB cache, 2 GB RAM, and
Linux 2.6.18.

We used two datasets of 43k and 52k probabilistic points,
respectively, derived from probabilistic segmentation [10] of
wholemount micrographs of horizontal cells. For scalability
experiments, the dataset was artificially enlarged by randomly
copying cells and translating them in space. The implementa-
tion and data are available for download from www.ljosa.com.

To assess the performance of the plane sweep algorithm
for threshold PSJ, we varied the number of pairs from 109 to
1014 and measured the running time of the three join methods
(nested loop join, D&C, and plane sweep). The threshold was
chosen so the queries returned 50–100 pairs. Nested-loop join
was too slow to finish for the large datasets, but the running
times for plane sweep and D&C are plotted in Figure 7 on
a log-log scale. We see that the plane sweep algorithm is
faster than the divide and conquer method, except for very
small datasets (which can already be joined in less than 0.3 s).
For larger datasets, the plane sweep is significantly faster. For
instance, two sets of 1014 points can be joined 100 times faster
with our plane sweep algorithm.

The next experiment explores the block size parameter of
the scheduling algorithm. Figure 8 shows the running time
for datasets of several sizes, and for different block sizes.
We see that increasing the block size improves the speed
of the algorithm. This is because the prediction (sorting)
step dominates the running time when there are many small
blocks. Increasing the block size too much, however, causes
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the running time to go up because the time to join two blocks
becomes significant. Based on this experiment, we decided to
use a block size of 215 points for the remaining experiments.

Next, we investigated the scheduling algorithm’s ability to
prune pairs of MBRs. Figure 9 shows how the threshold
increased during an execution of the top-k algorithms (plane
sweep with and without scheduling) on a dataset of 9×1012

pairs. We set k to 20. Without scheduling, pairs are examined
in an order based solely on the x-coordinates of the points.
As a result, it took the algorithm almost 10 s to find good
pairs. Thereafter, the threshold increased gradually. As long
as the threshold was low, the algorithm continued to process
candidate pairs that scored too low to affect the final result.
In contrast, the scheduling algorithm invested about 2 s in
ordering the pairs of MBRs. It was then able to find some
high-scoring pairs very quickly, and thereby raise the threshold
to just below its final value. As a result, most of the remaining
pairs of MBRs were pruned.

Figure 10 shows how the techniques for top-k PSJ scale
with the number of pairs. The first, third, and fourth curves
show the running time of the scheduling algorithm using
NLJ, divide and conquer, and plane sweep, respectively, to
join the MBRs. Plane sweep and D&C lead to an order of
magnitude improvement compared to NLJ, and this speedup
is independent of dataset size. The difference between plane
sweep and D&C is small because there are only 33k points
in each MBR. The second curve shows the running time for
plane sweep without scheduling. We see that as datasets grow
very large, the lower time complexity of the pure plane sweep
algorithm prevails, although the scheduling algorithms is as
much as an order of magnitude faster for datasets of more
moderate size.

VI. RELATED WORK

Our score function for objects of uncertain extent (Defini-
tion 4) mirrors the minimum matching distance, which is used



 0

 1

 2

 3

 4

 0  2  4  6  8  10  12  14  16  18  20

T
hr

es
ho

ld
 (

×
 1

0−
3 )

Elapsed time [s]

Scheduling
No scheduling

Fig. 9. Without scheduling, the threshold for the plane sweep algorithm for
top-k PSJ stays at zero for a long time, then increases gradually. The best
results are not found until late in the search. The scheduling algorithm, in
contrast, invests some time on preprocessing; then, some good pairs are found
quickly, raising the threshold and pruning most of the remaining candidate
pairs.

 0.1

 1

 10

 100

 1e+11  1e+12  1e+13  1e+14  1e+15

R
un

ni
ng

 ti
m

e 
[s

]

No. of pairs

NLJ with scheduling
Plane sweep without scheduling

D&C with scheduling
Plane sweep with scheduling

Fig. 10. With scheduling, plane sweep is an order of magnitude faster
than NLJ, regardless of database size. As datasets grow very large, the lower
time complexity of the pure plane sweep algorithm prevails, although the
scheduling algorithms is as much as an order of magnitude faster for datasets
of more moderate size.

for CAD objects represented as vector sets [29], [30].
Spatial joins have been studied extensively, and many au-

thors [2], [3], [4], [5] employ some form of plane sweep.
There are significant differences, however, because their sweep
algorithms detect intersections between two sets of rectangles,
where each rectangle is a minimum bounding rectangle (MBR)
of an object. Their objects have exact extent, so as long as
the rectangles fit reasonably tightly around the objects, the
distance between two rectangles will be a relatively tight
lower bound for the distance between the objects they contain.
Intersection between rectangles (possibly after dilation [31]

in order to find objects within a certain distance of each
other) is therefore a good pruning step. In contrast, our objects
consist of probabilistic points, so the distance within which
another point must be in order to match this object varies with
the point’s probability. Thus, techniques based on rectangle
intersection would produce many false positives.

Others have also scheduled spatial joins and used MBRs
for pruning. Brinkhoff, Kriegel, and Seeger [3] compute spatial
joins of deterministic sets of rectangles recursively on R-trees.
Huang, Jing, and Rundensteiner [4] also perform spatial joins
on R-trees, but traverse them breadth-first in order to optimize
I/O better. Kahveci, Lang, and Singh [32] use a prediction
matrix to schedule I/O-bound joins. Because these techniques
are for non-probabilistic spatial joins, there is a certain set of
page pairs that will need to be joined. Our situation is different
because we are answering a top-k PSJ query. Thus, the results
are not all equally important but have scores. This flavors the
way we do the scheduling: For us, finding a high-scoring pair
soon is more important than reducing I/O in the future because
the joins we plan for the future may be pruned if we find a
high-scoring pair soon.

Abel et al. [1] discuss caching strategies for spatial join.
Faloutsos et al. [33] use power laws to estimate the selectivity
of spatial joins. Ravada et al. [6] take a graph partitioning
approach to scheduling spatial joins.

Fagin’s algorithm [34] and the threshold algorithm [35] are
top-k algorithms for joins, and several top-k algorithms have
been proposed for probabilistic data under different models
and assumptions [36], [37], [16]. These algorithms do not work
for spatial joins, for they rely on primary key lookups: After
finding an object in one dataset (source), they search the other
datasets for the same object so its score can be determined. In
a spatial join, however, we are not looking for the same object
in two datasets, but for all spatially proximate objects.

The only previous PSJ algorithm of which we are aware
is that of Kriegel et al. [38]. The model is different in that
the objects have no extent, but are point objects. Samples of
the position are clustered using k-means and stored in an R-
tree-like index structure, which can then be used to answer
forms of threshold and top-1 PSJ queries in which pairs
are ordered by probability of being within a fixed distance
threshold. The implementation and datasets were not available
for experimental comparison.

Patel and DeWitt [5] perform spatial joins on large datasets
that have no index structure. They partition the dataset so two
partitions fits in memory, then join pairs of partitions by plane
sweep. Arge et al. [2] take a similar approach, but partitions
the dataset along one axis. Their algorithm has optimal time
and I/O complexity.

VII. CONCLUSION

Spatial joins of probabilistic objects have many applications
in geographical information systems and biomedical image
analysis. They are technically challenging because the decision
of whether to include a pair of points in the result depends
on not only their distance from each other, but also both



their probabilities. In addition, finding the top-ranking results
requires that we solve a spatial join and a top-k query at the
same time.

We have proposed threshold probabilistic spatial joins
(PSJs) and top-k PSJs and presented efficient algorithms for
answering them. Our plane sweep algorithm for threshold PSJs
joins n points with m other points in O((n + m)(logn + k))
time, where k is the number of results above the threshold.
The algorithm extends to multidimensional data.

We have presented a variant of the plane sweep algorithm
that can answer top-k PSJs. Our index-based scheduling
method finds high-scoring results early, thereby speeding up
the search by an order of magnitude.
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