
Indexing Spatially Sensitive Distance Measures
Using Multi-resolution Lower Bounds

Vebjorn Ljosa, Arnab Bhattacharya, and Ambuj K. Singh

University of California, Santa Barbara, CA 93106-5010, USA
{ljosa, arnab, ambuj}@cs.ucsb.edu

Abstract. Comparison of images requires a distance metric that is sen-
sitive to the spatial location of objects and features. Such sensitive dis-
tance measures can, however, be computationally infeasible due to the
high dimensionality of feature spaces coupled with the need to model the
spatial structure of the images.

We present a novel multi-resolution approach to indexing spatially
sensitive distance measures. We derive practical lower bounds for the
earth mover’s distance (EMD). Multiple levels of lower bounds, one for
each resolution of the index structure, are incorporated into algorithms
for answering range queries and k-NN queries, both by sequential scan
and using an M-tree index structure. Experiments show that using the
lower bounds reduces the running time of similarity queries by a fac-
tor of up to 36 compared to a sequential scan without lower bounds.
Computing separately for each dimension of the feature vector yields a
speedup of ∼14. By combining the two techniques, similarity queries can
be answered more than 500 times faster.

1 Introduction

Any image database, whether a newspaper photo archive, a repository for bio-
medical images, or a surveillance system, must be able to compare images in
order to be more than an expensive file cabinet. Content-based access is key
to making use of large image databases, such as a collection of decades’ worth
of diverse photographs or the torrent of images from new, high-throughput mi-
croscopes [1]. Having a notion of distance is also necessary for global analyses
of image collections, ranging from general-purpose techniques such as clustering
and outlier detection to specialized machine learning applications that attempt
to model biological processes.

Comparing two images requires a feature extraction method and a distance
metric. A feature is a compact representation of the contents of an image. The
MPEG-7 standard [2] specifies a number of image features for visual browsing. A
distance metric computes a scalar distance between two features: examples are
the Euclidean (L2) distance, the Manhattan (L1) distance, and the Mahalanobis
distance [3]. The choice of image feature and distance metric depends on the
nature of the images, as well as the kind of similarity one hopes to capture.

For many classes of images, the spatial location is important for whether two
images should be considered similar. For instance, two photographs with a large

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 865–883, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

866 V. Ljosa, A. Bhattacharya, and A.K. Singh

Fig. 1. Biologists consider images A and B more similar than images A and C, so if
image A is a query on a database consisting of images B and C, a 1-NN query should
return image B, not image C. To capture this, a distance metric must take the spatial
location into account.

blue region (the sky) in the upper half and a large green region (a field) in the
lower half might be similar to each other, but different from an image with a
large green region (a tree) in the upper half and a large blue region (a lake) in
the lower half. As a second example, Figure 1 contains three fluorescent confocal
microscopy images of retinas, collected for studying how the mammalian retina
responds to injury.1 The isolectin B4-labeled objects (shown in blue) in the
subretinal space (near the top of the image) are macrophages and the basement
membrane of the RPE, whereas the isolectin B4-labeled tissue in the inner retina
(lower half of the image) consists of microglial cells and blood vessels [4]. Other
examples can be constructed from photographs or surveillance images where one
wishes to discount small rotations or translations in defining image similarity.

The earth mover’s distance (EMD),2 first proposed by Werman et al. [6],
captures the spatial aspect of the different features extracted from the images.
The distance between two images measures both the distance in the feature
space and the spatial distance. As an example, suppose we extract a very simple
feature, the number of blue pixels, from each tile of the images in Figure 1. The
EMD considers each feature a mass located at the position of the tile it came
from, and measures the distance between two images by computing the amount
of work required to transform one image into the other. In the example, the EMD
from query image A to database images B and C are 23 and 37, respectively, so
A is more similar to B than to C. In contrast, the L2-norm yields a distance of
8.7 from A to B and 7.5 from A to C. A biologist would agree with the EMD:
The retina in image C is normal, whereas the two others have been detached
(lifted from their normal position in the eye) for 1 day.

Rubner et al. [5] successfully use the EMD for image retrieval by similar-
ity from large databases and show that it generally outperforms other distance
measures like the Lp-norm, Jeffrey divergence, χ2 statistics, and quadratic-form
distance in terms of precision and recall. Stricker and Orengo [9] show that for

1 See color images in the electronic version of the paper. More images can be found
in the UCSB Bioimage database, http://www.bioimage.ucsb.edu.

2 The name was first used by Rubner et al. [5]. Earlier works (e.g., [6, 7]) call it the
match distance, and statistics literature uses Mallows or Wasserstein distance [8].

Indexing Spatially Sensitive Distance Measures 867

image retrieval, the L1 distance results in many false negatives because neigh-
boring bins are not considered. The EMD has strong theoretical foundations [7]
and is robust to small translations and rotations in an image. It is general and
flexible, and can be tuned to behave like any Lp-norm with appropriate pa-
rameters. The EMD has also been successfully applied to image retrieval based
on contours [10] and texture [11], as well as similarity search on melodies [12],
graphs [13], and vector fields [14].

Computing the EMD is a linear programming (LP) problem, and therefore
computationally expensive. For instance, computing the EMD for 12-dimensional
features extracted from images partitioned into 8 × 12 tiles takes 41 s, so a
similarity search on a database of 4,000 images can take 46 h. (See Section 5.)

In this paper, we propose the LB-index, a multi-resolution approach to index-
ing the EMD. The representation of an image in feature space is condensed into
progressively coarser summaries. We develop lower bounds for the EMD that
can be computed from the summaries at various resolutions, and apply these
lower bounds to the problem of similarity search in an image database. This
paper makes the following contributions:

– We formulate the EMD to work directly with feature vectors of any dimen-
sionality without requiring the feature values of the images to add up to the
same number. The formulation extends to concatenation of different feature
vectors, as weights can be added to each dimension of the feature vector.

– We show that the distance can be computed separately for each dimension
of the feature vector. This leads to a speedup of ∼14.

– We derive a lower bound for the EMD. The bound is reasonably tight, much
faster to compute than the actual distance, and can be computed from a low-
resolution summary of the features representing an image. Different levels of
lower bounds can be computed: Higher-level bounds are less tight, but less
expensive to compute.

– We show how sequential scan and variants of the M-tree algorithms can
use the lower bounds to speed up similarity search. Experiments show that
the lower bounds increase the speed of range and k-NN queries by factors of
∼36 and ∼7, respectively. With the two techniques (decomposition and lower
bounds) combined, similarity queries can be answered ∼500 times faster.

The rest of the paper is organized as follows. Section 2 formally defines our
distance measure and shows that it can be computed separately for each dimen-
sion of the feature vector. Section 3 introduces our multi-resolution lower-bound
approach. Section 4 explains how the lower bounds can be used for similarity
search, both by sequential scan and using an M-tree. Section 5 evaluates the
multi-resolution approach experimentally. Finally, Section 6 discusses related
work, before Section 7 concludes the paper.

2 The Earth Mover’s Distance

In this section, we formally define the EMD between images, extending Werman
et al.’s [6] formulation for grayscale images. The definition applies to feature

868 V. Ljosa, A. Bhattacharya, and A.K. Singh

vectors extracted from image regions. The image feature can be of any dimen-
sionality; in Section 2.1, we show that the distance can be computed indepen-
dently for each dimension of the feature vector and added up to get the total
distance. All feature values must be non-negative, but this is not an important
restriction, as they can be made positive by adding the same large number to
all feature values of all images. This will not affect the value of the EMD.

Suppose that the images A and B are composed of n and m regions, respec-
tively. For any two regions i ∈ A and j ∈ B, the ground distance cij is the spatial
distance between the two regions. A common choice is to use the L2-distance
between the centroids of the two regions as the ground distance.

Feature vectors are extracted from each region of each image. The feature
vectors of image A are {a0, . . . ,an−1}, and those of B are {b0, . . . , bm−1}. If
the feature vectors are d-dimensional, then each ai and bi is a column vector of
d values. A weight vector w = [w1 . . . wd]T specifies a weight for each dimension
of the feature vector. For simple features, w = [1 . . . 1]T. However, a different w
may be useful, for instance when several different features are concatenated into
one vector and one would like to assign them different weights.

Computing the EMD involves finding a flow matrix F = {fij}, where each
flow fij denotes mass to be moved from each region i in image A to each region
j in image B such that image A is transformed into image B. Note that each
fij is a column vector of d elements. Also note that both F and C = {cij} are
matrices of size n × m.

The cost of moving mass fij from region i to region j is the ground distance
from i to j multiplied by the mass to be moved, or cijw

Tfij , where the weight
vector w is used to combine the d elements of fij into a scalar. The EMD, which
is the minimum cost of transforming A into B, can then be defined as

min
F

n−1∑

i=0

m−1∑

j=0

cijw
Tfij (1)

subject to fij ≥ 0,
m−1∑

j=0

fij = ai, and
n−1∑

i=0

fij = bj ,

element-wise and ∀i ∈ {0, . . . , n − 1}, ∀j ∈ {0, . . . , m − 1}.

Finding the optimal flow matrix F is a linear programming problem. It can be
solved with the simplex method [15], but in the worst case, its running time is
exponential in the number of regions [16].

An important assumption so far is that
∑n−1

i=0 ai =
∑m−1

j=0 bj , i.e., the images
have the same total mass. This is not generally the case. For instance, if the
image feature is the intensity, a generally dark image will have a total mass
that is lower than that of a generally light image. Werman et al. [6] suggest
normalizing the images so that their intensities add up to the same value, but
this causes problems, as the distinction between a dark image and a light image
will be lost. Instead, we introduce flows to and from a special “region” called
the bank. The effect of these flows is to allow the total mass of one image to be

Indexing Spatially Sensitive Distance Measures 869

3 0

2

2 4

56

1

2

bankbank

a0

a1

a2 b0
b1

a3 b2

1

5

0.5 1.2 1.0

1.3 0.3 1.0

0.8 0.7 1.0

1.0 1.0 0.03

2

1

0

0 1 2

c =

2 1 0

0 0 0

0 2 0

0 1 53

2

1

0

0 1 2

f =
0

2 4 5

6

2

3

2

Fig. 2. An example computation of the EMD between two images A and B with arbi-
trary regions. The “banks” are initialized with values such that the sum of the feature
values for A and B become equal. The ground distance matrix c is shown on the left
while the optimal flow matrix F is shown on the right. The cost to the bank, α = 1.0.
The flows are shown by arrows with the corresponding mass. The EMD is 4.6.

increased in order to match the total mass of the other, but at a cost proportional
to the increase. We add this extra bank region to each image. The bank region
has the same ground distance to all other regions, denoted by the parameter α.
The ground distance from the bank to itself is, of course, 0. The banks of the
images A and B are initialized with element-wise non-negative feature values
an =

∑m−1
j=0 bj and bm =

∑n−1
i=0 ai. The EMD can now be reformulated to

include flows to and from the banks (the n-th and m-th region of the two images,
respectively):

ρAB = min
F

n∑

i=0

m∑

j=0

cijw
Tfij (2)

subject to fij ≥ 0,

m∑

j=0

fij = ai, and
n∑

i=0

fij = bj ,

element-wise and ∀i ∈ {0, . . . , n}, ∀j ∈ {0, . . . , m}.

Notice that when α is no more than half the minimum ground distance, the
EMD is the same as the L1 distance (scaled by 2α) because a flow from region
i to the bank and back to region j is never more expensive than a flow directly
from i to j. The EMD is a metric, provided the ground distance is a metric [6].
Introducing the banks can make the ground distance non-metric, but the EMD
remains metric as the solution to the LP problem never uses the ground distances
that violate the triangle inequality. (Proof omitted due to lack of space.)

An example EMD computation is shown in Figure 2. Image A is composed of
regions a0, a1, a2 (and bank a3). Image B is composed of regions b0, b1 (and bank
b2). The example assumes α = 1.0. The EMD is

∑3
i=0

∑2
j=0 cij1Tfij = 4.6.

2.1 Decomposing the EMD for Quicker Computation

The EMD, as defined in Eq. (2), is a large linear programming problem because
the flows are vectors of the same dimensionality as the image features. Notice,

870 V. Ljosa, A. Bhattacharya, and A.K. Singh

however, that there is no “cross-talk” among the dimensions of the feature vec-
tors, i.e., there are no direct flows from one dimension to another. Thus, the
flows can be decomposed by considering only one dimension at a time, and we
can solve d smaller LP problems (where d is the dimensionality of the feature
vector) and combine the solutions. Eq. (2) can be written as

ρAB = min
F

n∑

i=0

m∑

j=0

cijw
Tfij = min

F

n∑

i=0

m∑

j=0

cij

d∑

k=1

wkfijk. (3)

Theorem 1 shows that Eq. (3) reduces to

ρAB =
d∑

k=1

min
Fk

n∑

i=0

m∑

j=0

cijwkfijk. (4)

Theorem 1 (decomposition). The minimum cost when all dimensions of the
feature vector are considered simultaneously is the same as the sum of minimum
costs when each dimension of the feature vector is considered separately, i.e.,

min
F

n∑

i=0

m∑

j=0

cij

d∑

k=1

wkfijk =
d∑

k=1

min
Fk

n∑

i=0

m∑

j=0

cijwkfijk. (5)

Proof (sketch). Since the constraints in the definition of the EMD in Eq. (2)
are all element-wise, they can be separated and solved as separate problems and
then added up to get the actual solution. (Full proof omitted.) ��

The EMD formulation in Eq. (2) is directly applicable when the dimensions of
the feature vectors are independent. This is the case, for instance, for the Color
Layout Descriptor (CLD) [2]. Other feature vectors, like the Color Structure
Descriptor or the Homogeneous Texture Descriptor, can be subjected to princi-
pal component analysis (PCA) in order to find their orthogonal bases. The LP
problems for these independent bases can then be solved separately. Another
way to deal with dependence between dimensions is to cluster the dimensions so
that there is no crosstalk between clusters, and then compute separately for each
cluster. This approach is applicable, for instance, to biomedical images showing
protein localization, where features are extracted independently for each protein.

Experiments (see Section 5) show that Theorem 1 can reduce the running
time and main memory requirements of EMD computations by factors of up to
14 and 7,600, respectively.

3 Multi-resolution Lower Bounds for the EMD

Theorem 1 makes the time complexity of computing the earth mover’s distance
(EMD) linear in the dimensionality of the feature vector, but the running time
is still high for large number of regions because the number of variables in the
LP problem increases quadratically with the number of regions. Unfortunately,

Indexing Spatially Sensitive Distance Measures 871

a relatively large number of regions is necessary in order to capture the essential
traits of some classes of images, so working with a small number of regions is
not always an option. We found that increasing the number of regions from 6
to 24 increased the accuracy of classification of confocal images of feline retinas
from 90 % to 96 %. This, however, increased the running time for each distance
computation from 4 ms to 62 ms. With 96 regions, the accuracy was 98 %, but
the running time went up to 2.9 s.

In this section, we show how a lower bound for the distance using a large
number of regions can be computed using a smaller number of regions. This
allows us to combine the high accuracy of many regions with the high speed of
few regions. As we will see in Section 4, this is key to indexing the EMD.

Suppose image A is divided into n non-bank regions Zn = {0, 1, . . . , n − 1},
and ai is the feature vector of region i. Given an integer n′ < n, we partition
Zn into n′ non-empty sets A′

0, . . . , A
′
n′−1. We write A′ for the set of sets thus

obtained, and add to it a special set A′
n′ containing only the bank region, n.

Given m′ < m, B′ is defined for image B in the same way.
Recall that the ground distance c is defined on Zn+1 × Zm+1. A new distance

function c′ is defined on Zn′+1 × Zm′+1. The distance between partitions is the
minimum pairwise ground distance between the partitions’ respective members:

c′ij = min
r∈A′

i,s∈B′
j

crs (6)

The feature vector a′
i of a partition A′

i is the sum of feature vectors of the
partition’s member regions:

a′
i =

∑

j∈A′
i

aj (7)

We can now solve the linear programming problem

ρ′AB = min
F′

n′∑

i=0

m′∑

j=0

c′ijw
Tf ′

ij (8)

subject to f ′
ij ≥ 0,

m′∑

j=0

f ′
ij = a′

i, and
n′∑

i=0

f ′
ij = b′

j ,

element-wise and ∀i ∈ {0, . . . , n′}, ∀j ∈ {0, . . . , m′}.

This is less computationally demanding because the number of variables in the
LP problem is reduced by a factor of (n/n′)(m/m′). For instance, if 4 and 4
regions are combined in both images, the number of variables is reduced by a
factor of 16. The following theorem proves that ρ′AB is a lower bound for ρAB .

Theorem 2 (lower bound). The distance ρ′AB, defined in Eq. (8), computed
from the coarse representations A′ and B′ using the modified ground distance c′

of Eq. (6), is a lower bound for the EMD ρAB, defined in Eq. (2).

872 V. Ljosa, A. Bhattacharya, and A.K. Singh

Proof. We construct a flow matrix F′ for the coarse representations A′ and B′

from the corresponding optimal flow matrix F for A and B as follows:

f ′
ij =

∑

r∈A′
i

∑

s∈B′
j

frs. (9)

Note that F′ may not be the optimal flow matrix for A′ and B′.
Eq. (2) can be expressed as sums over the partitions A′ and B′ of the images

and then over the regions r and s in each partition, i.e.,

ρAB = min
F

n∑

i=0

m∑

j=0

cijw
Tfij = min

F

n′∑

i=0

∑

r∈A′
i

m′∑

j=0

∑

s∈B′
j

crsw
Tfrs (10)

By Eq. (6), this is at least

min
F

n′∑

i=0

∑

r∈A′
i

m′∑

j=0

∑

s∈B′
j

c′ijw
Tfrs.

Therefore,

ρAB ≥ min
F

n′∑

i=0

∑

r∈A′
i

m′∑

j=0

∑

s∈B′
j

c′ijw
Tfrs = min

F

n′∑

i=0

m′∑

j=0

c′ijw
T

⎛

⎝
∑

r∈A′
i

∑

s∈B′
j

frs

⎞

⎠ ,

which, by Eq. (9), is equal to

min
F′

n′∑

i=0

m′∑

j=0

c′ijw
Tf ′

ij = ρ′AB . (11)

Finally, by Eq. (7), the constraints of ρAB and ρ′AB are equivalent. ��

Theorem 2 can easily be generalized to apply even when there is crosstalk be-
tween different dimensions of the feature vector, i.e., when there are flows directly
from one dimension of one region to another dimension in another region. (The
definition in Eq. (2) allows for such flows only indirectly, through the bank.) The
generalized proof has been omitted because of space constraints.

Although Theorem 2 is formulated in terms of the EMD definition in Eq. (2),
with feature values as mass, it can easily be adapted to work with an alternative
definition of EMD, used by Rubner et al. [5], where the image is clustered into
regions of similar feature values and the mass is the number of pixels in each
region. The only changes needed are: (1) remove the bank region, (2) make the
ground distance the distance between centroids of the sets (i.e., the weighted
mean of the members’ centroids), and (3) combine the weights of each set’s
members rather than their feature values.

Indexing Spatially Sensitive Distance Measures 873

Multi-resolution Lower Bounds. So far, we have obtained a coarser sum-
mary of an image by combining n level-0 regions into n′ level-1 regions. It is
possible to repeat this process, combining the n′ level-1 regions into even fewer
n′′ level-2 regions, and so on. The ground distance between regions at level i
(i > 0) is the minimum pairwise distance between the corresponding regions at
level (i − 1). Multiple levels of lower bounds are key to building efficient index
structures for computationally costly distances such as the EMD: Large num-
bers of higher-level distances can be computed quickly while searching a tree or
scanning a list of objects. Most objects can be disregarded based on the lower
bound, and the time-consuming lower-level distances need only be computed
for the remaining objects. This is the principle behind the search algorithms in
Section 4.

4 Using Lower Bounds to Speed Up Similarity Search

This section presents LB-index algorithms that use the lower bounds derived
in Section 3 to search a large database quickly. We consider range queries and
k-NN queries. In the context of image similarity search, a range query (A, τ)
asks for all images that have a distance of no more than τ from a query image
A. (Rather than give the threshold τ explicitly, a user may derive it from a third
image B as τ = ρAB .) A k-NN query (A, k) asks for the k images that have the
lowest distance from a query image A.

For each class of queries, two algorithms are presented: sequential scan and
M-tree. The algorithms are applicable not only to the EMD, but to any distance
measure for which a reasonable lower bound can be computed much more quickly
than the actual distance. For clarity, we present the algorithms with exactly two
levels of lower bounds. It should be obvious how to extend them to work with
any number of lower-bound levels.

4.1 Sequential-Scan Algorithms

Weber et al. [17] showed that for high-dimensional vector spaces, sequential scan
outperforms any index structure. It has the additional benefits of being simple
and not requiring a priori construction of any index structure. Hence, making
sequential scan faster is important. In this section, we describe sequential-scan
algorithms for range and k-NN queries. For further reference and for brevity, we
name the algorithms seq-range-lb2 and seq-knn-lb2, respectively.

The range-query algorithm seq-range-lb2 takes two arguments, a query
object Oq and a query radius r(Oq), and returns all objects in the database
whose distance to Oq is less than or equal to r(Oq). For each object Oj in the
database, seq-range-lb2 computes dLB2(Oq, Oj), the second-level lower bound
on the distance from the query object to the database object. If dLB2(Oq, Oj)
exceeds r(Oq), then the actual distance d(Oq, Oj) must also exceed r(Oq), so
Oj can be safely pruned. Otherwise, the first-level lower bound, dLB(Oq, Oj),
is computed and the same test repeated: if dLB(Oq, Oj) exceeds r(Oq), then
the object can be pruned. Finally, if both dLB2(Oq, Oj) and dLB(Oq, Oj) were

874 V. Ljosa, A. Bhattacharya, and A.K. Singh

within the query radius, then the exact distance, d(Oq, Oj), is computed, and if
d(Oq, Oj) ≤ r(Q), Oj is added to the answer set.

The k-NN-query algorithm seq-knn-lb2 takes as arguments a query object
Oq and the number of nearest neighbors to retrieve k, and returns the k objects
in the database that are nearest to Oq (ranked according to their distances). A
list L (initially empty) of up to k nearest neighbors seen so far is maintained,
sorted by actual distance to the query. The variable dk keeps track of the actual
distance to the k-th nearest object seen so far, and is ∞ if fewer than k actual
distances have been computed.

The algorithm starts by computing dLB2 to all objects in the database and
sorting them by dLB2. The sorted list L is then traversed in order. For each object
Oj , the second-level lower bound on its distance to the query is compared to dk.
If dLB2(Oj , Oq) > dk, the algorithm halts and returns L. If not, the first-level
lower bound, dLB(Oj , Oq), is computed. If dLB(Oj , Oq) > dk, the object Oj is
not considered any more. Otherwise, the object could be one of Oq’s k nearest
neighbors, so the actual distance d(Oj , Oq) is computed. If d(Oj , Oq) ≤ dk, Oj is
inserted at the proper place in L, dk is updated, and objects in L whose actual
distance to Oq exceeds dk are removed.

4.2 Algorithm for Range Queries Using M-Tree

Ciaccia et al.’s M-tree [18] is perhaps the most well-known metric tree, and
organizes objects in a metric space into a tree structure so that the triangle
inequality can be used to prune subtrees during search. We present the algo-
rithm m-range-lb2, which performs a range search in an M-tree using lower
bounds. The algorithm is based on Ciaccia et al.’s original M-tree range query
algorithm [18], which we refer to as m-range.

Let N be a node, Op the parent node of N , Q the query object, Or a child
node of N (if N is an internal node), and Oj an object of N (if N is a leaf node).

If N is an internal node, m-range decides not to search the subtree rooted
at Or if |d(Op, Q)−d(Or, Op)| > r(Q)+ r(Or). In m-range-lb2, we replace the
condition with one that will prune fewer subtrees, but which can be calculated
much more quickly from dLB2(Op, Q):

dLB2(Op, Q) − d(Or, Op) > r(Q) + r(Or) (12)

Note that the modulus (absolute value) sign cannot be applied as it violates
the correctness of the algorithm: if dLB2(Op, Q) − d(Or, Op) > r(Q) + r(Or),
then d(Op, Q) − d(Or, Op) > r(Q) + r(Or), so we can prune; but, if d(Or, Op) −
dLB2(Op, Q) > r(Q)+r(Or), then it is not necessary that d(Or, Op)−d(Op, Q) >
r(Q) + r(Or), so pruning the subtree would be incorrect.

If N is a leaf node, m-range discards Oj without computing d(Oj , Q) if
|d(Op, Q) − d(Oj , Op)| > r(Q). In m-range-lb2, we replace the condition with

dLB2(Op, Q) − d(Oj , Op) > r(Q), (13)

which again prunes fewer subtrees but is faster to calculate. Once more, we
cannot consider the absolute value as that would violate the correctness of the

Indexing Spatially Sensitive Distance Measures 875

algorithm. If condition (13) fails to prune an object Oj , approximations to the
distance from Oj to the query Q are computed—first the second-level lower
bound, then the first-level lower bound, and finally the exact distance. The
algorithm proceeds to the next level only if the object cannot be pruned based
on the previous level. The rest of the algorithm and the data structures remain
unchanged from m-range.

4.3 Algorithm for k-NN Queries Using M-Tree

Our algorithm for answering k-NN queries, which uses the lower bounds, is called
m-knn-lb2. It is based on the original k-NN algorithm for M-trees [18], which
we refer to as m-knn. We only describe the procedure m-knn-nodesearch-lb2,
since the rest of the algorithm and the data structures are identical.

Let N be a node, Op the parent node of N , Q the query object, Or a child
node of N (if N is an internal node), and Oj an object of N (if N is a leaf node).
We maintain dmin for the tree T (Or) rooted at Or as

dmin(T (Or)) = max {dLB2(Or, Q) − r(Or), 0} . (14)

If N is an internal node, m-knn decides not to search the subtree rooted at
Or if |d(Op, Q) − d(Or, Op)| > dk + r(Or) where dk is maintained as the actual
distance to the kth nearest object. In m-knn-lb2, we replace this condition with
one that is faster to calculate but has less pruning power:

dLB2(Op, Q) − d(Or, Op) > dk + r(Or) (15)

If N is a leaf node, m-knn prunes Oj without computing d(Oj , Q) if |d(Op, Q)−
d(Oj , Op)| > dk. In m-knn-lb2, we replace this condition with

dLB2(Op, Q) − d(Oj , Op) > dk, (16)

which again has less pruning capacity, but can be calculated much faster. If an
object cannot be pruned based on condition (16), the second-level lower bound
dLB2(Oj , Q) is computed and compared to dk. If this test fails to prune the
object, the first-level lower bound dLB(Oj , Q) is computed. The actual distance
d(Oj , Q) is computed only if the first-level lower bound fails to prune the object.

Finally, we have removed the part of the algorithm that computes an upper
bound dmax(T (Or)) on the distance from Q to any object in the tree rooted at
Or. This is because the upper bound would require the computation of d(Or, Q);
using dLB2(Or, Q) would invalidate the bound.

4.4 Discussion

The M-tree range query algorithm never computes more actual distances than
does the sequential scan. It may, however, compute more lower bounds and
therefore take more time. To see this, recollect that the actual distances are never
computed for internal nodes. For child nodes, the actual distance is computed

876 V. Ljosa, A. Bhattacharya, and A.K. Singh

n1 n2 n3 n4

0 18

0

1 6

0 5 17

0 12

n1

n1 n3

n1 n3 n4n2

0 6

0 1 0 12

Actual from Q : 10 11 16 28
LB from Q : 5 10 15 20

n2

n3

n4

n1

Answer Set: {n1, n2}

Fig. 3. Example where the M-tree performs worse than sequential scan for k-NN query.
The M-tree shown on the left is built on the database {n1, n2, n3, n4}. The distance
matrix of the objects is shown on the right together with the actual and lower bound
distances from the query Q to all database objects. A 2-NN query for Q returns {n1,
n2}. Sequential scan performs 2 actual computations while M-tree performs 4 actual
computations. For details, see text.

only if the lower bound is within the range of the query, in which case the
sequential-scan algorithm must compute it as well. The number of lower bound
computations may be higher, as that depends on the order of traversal.

The M-tree k-NN query algorithm can end up computing more actual dis-
tances than the sequential scan (leading to higher running time) when using the
lower bounds. Figure 3 gives an example. There are 4 objects in the database:
n1, n2, n3 and n4. The actual distances among them are shown in the distance
matrix on the right. The M-tree on the left is built on these objects. For the
2-NN query of an object Q, the actual distances and the lower bound distances
are (10, 11, 16, 28) and (5, 10, 15, 20), respectively. Sequential scan computes
actual distances to n1 and n2, and since the lower bound to n3 is greater than
the actual distance to n2, it stops. The M-tree, on the other hand, first tries to
search the right subtree rooted at n3 instead of the left subtree rooted at n1
since dLB(n3, q)−r(n3) < dLB(n1, q)−r(n1). As a result, it computes the actual
distances to n3 and n4. Finally, when the left subtree is searched, it computes
actual distances for n1 and n2 and ends up with 4 actual distance computations.

We chose to use the M-tree because it is the most well-known metric index
structure; other index structures could also have been used. We do not focus on
the dynamic aspects of the index structure, and merely note that good insert
and split decisions can usually be made based on the lower bounds.

5 Experimental Results

We used two sets of confocal micrographs of cat retinas: (1) a set of 218 images
of retinal tissue labeled with anti-rhodopsin, anti-glial fibrillary acidic protein
(anti-GFAP), and isolectin B4; and (2) a set of 3932 images of retinal tissue
labeled with various antibodies and other labels. Querying a dataset of only a
few thousand images is challenging because of the EMD’s high computational
cost, so even though the second dataset may appear small, its size is sufficient
to demonstrate the benefits of our techniques. The experiments were run on
computers with Intel Xeon 3 GHz CPUs, Linux 2.6.9, and GLPK 4.8.

Indexing Spatially Sensitive Distance Measures 877

Except where noted, images were partitioned into 8 × 12 = 96 tiles. All
images were 512 × 768 pixels, so each tile was 64 pixels square. We used the
12-dimensional MPEG-7 color layout descriptor (CLD) [2] as our image feature.

In order to assess the tightness of our lower bounds, we compared the actual
EMD with the first- and second-level lower bounds. We also compared to a lower
bound proposed by Rubner et al. [5], using the L1 ground distance. One image
was chosen at random from the 218 dataset, and the exact distances from that
image to each of the 217 other images were computed, along with the three lower
bounds. Figure 4 shows the result, ordered by the actual distance. We see that
all three lower bounds are tight enough to be of use, but our first- and second-
level lower bounds are tighter than that of Rubner et al. This is not surprising,
since the latter uses the center of mass for all regions, and therefore loses all
spatial information. Using random images as queries, on average, the first-level,
second-level, and Rubner et al. lower bounds were 25 %, 44 %, and 68 % below
the actual distances, respectively. Also, none of the three lower bounds were
monotonic with respect to the actual distance.

Our second experiment measures the impact of Theorem 1 (decomposition).
All pairs of distances were computed between the color layout descriptors of
10 random images. The CLD has 12 dimensions, and computing for all dimen-
sions at once (i.e., without applying Theorem 1), took 41 s and used 37 MB of
main memory. Applying the theorem and computing the distances by solving 12
smaller LP problems reduced this to 2.9 s and 5 kB, respectively.

Our third experiment measures how the time to compute the EMD increases
with the number of regions. Ten images were chosen at random from the 218 data
set and tiled with four different tile sizes: 256, 128, 64, and 32 pixels square. This
corresponds to 6, 24, 96, and 384 tiles per image, respectively. All 100 distances
between the 10 images were computed for the four tile sizes using the simplex
method. The running times were 4 ms, 62 ms, 2.89 s, and 319 s, respectively. In
comparison, the Rubner et al. lower bound took 1.4 ms to compute. We see that
reducing the number of tiles from 96 to 24 reduces the running time by a factor
of 47, so our lower bound has a great potential for speeding up queries, provided
that it is tight enough. As pointed out in Section 2.1, the distance is computed
independently for each dimension of the feature vector, so the running time is
linear in the number of dimensions. Thus, speedup achieved by computing for a
lower number of bins is independent of the dimensionality of the feature vector.

5.1 Sequential-Scan Experiments

The next set of experiments measures how lower bounds reduce the cost of
answering range and k-NN queries on the 3932 dataset using sequential-scan
algorithms. All results are averages over 50 queries. Each query is a random
image from the dataset. We measure range query running times with a range
of 3.7 % of the maximum distance between any two images in the database. On
average, this returns 25 images. For k-NN queries, we measure times for k = 25.

Figure 5 compares the impacts of decomposition (Theorem 1) and lower
bounds (Theorem 2). We see that the two techniques separately reduce the

878 V. Ljosa, A. Bhattacharya, and A.K. Singh

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200

D
is

ta
nc

e
(x

 1
,0

00
)

Image pair

Exact
First−level LB

Second−level LB
Rubner et al.

Fig. 4. The first-level and second-level
lower bounds are tighter than Rubner et
al.’s lower bound. They are tight enough
to be of practical use.

 0.1

 1

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06

T
im

e
[m

in
]

Range relative to largest distance in database

Exact
Exact decomposed

LB
LB decomposed

LB2 decomposed

Fig. 5. For sequential-scan range queries,
decomposition leads to a speedup of 14.
One and two levels of lower bounds lead to
additional speedups of 22 and 36, respec-
tively. Total speedup is more than 500.

running time from over 40 h to 3.2 h and 1.5 h, respectively. Together, they
answer the query in 9 min. Adding a second level of lower bounds reduces this
further to 5 min, for a total speedup of more than 500.

The running times for range queries are shown in Figure 6. (The figure also
contains M-tree results, which will be discussed in Section 5.2.) The first-level
lower bounds result in a speedup of 22. Using both the first- and second-level
lower bounds increases the speedup to 36. In comparison, the Rubner et al. lower
bound led to a speedup of 5.7. For large ranges, the speedup diminishes, and the
algorithm computes all lower bounds as well as all exact distances.

The running times for k-NN queries are shown in Figure 7. For k = 25, the
first-level lower bound achieves a speedup of 6, and adding the second-level lower
bound makes 25-NN queries run 7 times faster than a sequential scan without
lower bounds. The Rubner et al. lower bound led to a speedup of 1.6.

Figure 8 shows how the total computation time for queries is divided be-
tween actual distances, first-level lower bounds, and second-level lower bounds.
Without lower bounds, the average query takes 3.2 h (not shown). With the first-
level lower bound, this is reduced to 9 min. The first bar in the figure shows that
about 50 % of this time is spent computing first-level lower bounds. Introduc-
ing a second-level lower bound reduces the number of first-level computations.
It adds 3932 second-level computations, but these are comparatively cheap, so
the running time is reduced by another factor of two. We see from the second
bar that only a small portion of the total time is spent computing second-level
lower bounds, so adding another level (or the Rubner et al. lower bound) would
not reduce the total time much. Obviously, if the first-level lower bound cannot
prune an object, the second-level lower bound cannot prune it either, so adding
the second level does not impact the time spent computing exact distances.

For 25-NN queries, the first-level lower bounds reduce the running time from
3.2 h to 30 min. Adding the second-level lower bounds increases the number of
actual computations slightly because pruning based on second-level bounds is

Indexing Spatially Sensitive Distance Measures 879

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
[h

]

(a) Range relative to largest distance in database

SEQ-RANGE
SEQ-RANGE-LB

SEQ-RANGE-LB2
M-RANGE

M-RANGE-LB
M-RANGE-LB2

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.01 0.02 0.03 0.04

T
im

e
[m

in
]

(b) Range relative to largest distance in database

SEQ-RANGE-LB
SEQ-RANGE-LB2

M-RANGE-LB
M-RANGE-LB2

Fig. 6. Running time for range queries. Figure (b) is a magnified view of the portion of
Figure (a) near the origin. For queries with a range of 3.7 % (returning on average 25
images), sequential scan runs 22 times faster when the first-level lower bound is used
and 36 times faster when both the first- and second-level lower bounds are used. The
M-tree by itself speeds up the search for small ranges, but very quickly becomes worse
than sequential scan. M-tree using the first level of lower bound achieves a speedup of
24. When using 2 levels, M-tree is not much better than sequential scan.

less effective than pruning based on first-level bounds. It saves many first-level
distance computations, however, yielding a net reduction in running time.

5.2 M-Tree Experiments

An M-tree index structure [18] was constructed on the 3932 dataset using the
bulk-loading algorithm of Ciaccia and Patella [19]. Color layout feature vectors
are 12 bytes for each tile, which amounts to 1.1 kB for each image. Because
the distance computations are so expensive, disk access times are negligible:
With a recent-model 15,000 rpm disk drive, a seek takes 3.6 ms, transfer of
1.1 kB takes 0.02 ms, and the latency of the disk drive is 2 ms. This adds up to
5.6 ms, compared to 4 ms for computing a single second-level lower bound. As
shown in Figure 8, computing second-level lower bounds is only a small part of
the total running time, so disk access times are also low. Consequently, saving
distance computations is much more important than saving disk accesses, and
we choose a page size of 2.5 kB, which yields a branching factor of two. The
M-tree had 1968 internal nodes (each with one centroid) and 1966 leaf nodes
(each with two objects). Therefore, the total size of the M-tree index structure
was (1968 + 1966 × 2) × 1.1 kB = 6.3 MB. In comparison, each image is about
1.1 MB, and so the index structure was only 0.15 % of the database size. For
each query, we counted the number of distance computations of each type and
computed total running times using the times reported in Section 5.

Figure 6 shows that the M-tree range search always outperforms sequential
scan with the same lower bounds. With a query range of 3.7 %, the speedup
is 9 % over sequential scan with the first-level lower bound. Adding the second
level yields only a negligible improvement, however. M-tree range search with
Rubner et al.’s lower bound is 7 times slower than that with our lower bounds.

880 V. Ljosa, A. Bhattacharya, and A.K. Singh

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
[h

]

(a) Number of nearest neighbors

SEQ-KNN
SEQ-KNN-LB

SEQ-KNN-LB2
M-KNN

M-KNN-LB
M-KNN-LB2

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

T
im

e
[m

in
]

(b) Number of nearest neighbors

SEQ-KNN-LB
SEQ-KNN-LB2

M-KNN-LB
M-KNN-LB2

Fig. 7. Running time for k-NN queries. Figure (b) is a magnified view of the portion
of Figure (a) near the origin. For 25-NN queries, sequential scan runs 6 times faster
when the first-level lower bound is used and 7 times faster when both lower bounds
are used. The M-tree, by itself, speeds up the search 2.2 times. M-tree using the first
level of lower bound achieves a speedup of 5.3, which is less than the corresponding
speedup of the sequential scan. When using 2 levels, it accelerates the query 5.4 times.

LB1 LB1 & LB2

(a) 3.7 % range queries

0

2

4

6

8

10

T
im

e
[m

in
]

2nd-level LB
1st-level LB
Actual

LB1 LB1 & LB2

(b) 25-NN queries

0

5

10

15

20

25

30

35

40

T
im

e
[m

in
]

2nd-level LB
1st-level LB
Actual

Fig. 8. The first-level lower bound reduces the running time of a range query from
3.2 h (not shown) to 9 min. Introducing a second-level lower bound reduces the total
running time to 5 min. The time to answer a 25-NN query is reduced from 3.2 h (not
shown) to 30 min, and further to 27 min.

Without lower bounds, the cost of an M-tree is extremely high because an
exact distance must be computed for every internal node considered in the search.
The pruning achieved by the index structure was not enough to offset this huge
cost. Caching of distances might help, as the centroid of an internal node will
reappear at least once in its subtree, but this is outside the scope of this paper.

We see from Figure 7 that the M-tree k-NN algorithm with lower bounds does
not perform as well as its sequential scan counterpart. The reason is that the
algorithm must decide on an order in which to search the subtrees without full
knowledge of their contents. In contrast, sequential scan has full access to all the
lower bounds. An exact distance computation is more than 700 times costlier
than a second-level lower bound computation, so the sequential scan algorithm’s
strategy to compute 3932 lower bounds up front pays off if it saves 6 or more

Indexing Spatially Sensitive Distance Measures 881

exact distance computations. For comparison, M-tree k-NN search performs 3
times slower with Rubner et al.’s lower bound than that with ours.

6 Related Work

Werman et al. [6] define the match distance for multidimensional histograms and
suggest its application to texture features, shape matching, and image compar-
ison. For the latter, the intensity of pixels is used as the mass. Peleg et al. [7]
formulate the match distance as an LP problem. Rubner et al. [5] introduce the
name earth mover’s distance, and study image retrieval using color distributions
and texture features. Their LP problem is substantially the same, but the input
slightly different: Pixels with similar feature values are clustered, and the num-
ber of pixels in each cluster is used as the mass. We are not aware of any study
that compares the two definitions experimentally. Our lower bounds and index
structures can be used with either definition. We use the name EMD for both.

Rubner et al. [5] also derive a lower bound—the distance between the cen-
ters of mass (in feature space) of the two images—for the EMD. Their bound
disregards position information, as the center of mass of each image lies at the
physical center of the image and contributes zero to the bound. We implemented
their lower bound, compared it with ours, and found (Section 5) that our lower
bounds were consistently tighter. As a consequence, our lower bounds resulted
in significantly faster querying, even though they were not as quick to compute.

Indyk and Thaper [20] embed the EMD in Euclidean space, and then use
locality-sensitive hashing to find nearest neighbors. VA-files [17] use a notion of
approximation similar to ours, and use lower and upper bounds on distances to
speed up searches.

The MPEG-7 color layout descriptor (CLD) [2] is resolution invariant and
uses the YCbCr color space. The image is divided into 64 blocks, and one repre-
sentative color is chosen from each block. The discrete cosine transform (DCT)
of each color component is then computed, resulting in three sets of 64 coeffi-
cients. The coefficients are finally zigzag scanned and non-linearly quantized to
retain 12 coefficients: 6 for luminance and 3 for each chrominance.

7 Conclusion

This article considered the problem of speeding up the computation of spatially-
sensitive distance measures between images. Adopting the earth mover’s dis-
tance, we showed how it can be decomposed, leading to a 14-fold speedup. We
then developed a novel multi-resolution index structure, LB-index, which con-
sists of progressively coarser summaries of the representation of an image. We
derived lower bounds that can be computed at multiple levels, corresponding to
the various resolutions of the index structure.

We developed a suite of similarity search algorithms that use the multiple lev-
els of lower bounds to speed up queries. The sequential scan algorithms achieved
speedups of up to 36 and 7 for range queries and k-NN queries, respectively.

882 V. Ljosa, A. Bhattacharya, and A.K. Singh

We also incorporated the lower bounds into the range search and k-NN search
algorithms for the M-tree index structure. These algorithms reduced the running
times of range queries and k-NN queries by factors of up to 36 and 5, respectively.

Possible avenues of future work are considering other spatially sensitive
distance measures and extending our approach to other tasks, such as classi-
fication and data mining.

Acknowledgements. We would like to thank Geoffrey P. Lewis from the lab-
oratory of Steven K. Fisher at UCSB for providing the retinal images. This
work was supported in part by grants ITR-0331697 and EIA-0080134 from the
National Science Foundation.

References

1. Swedlow, J.R., Goldberg, I., Brauner, E., Sorger, P.K.: Informatics and quantitative
analysis in biological imaging. Science 300 (2003) 100–102

2. Manjunath, B.S., Salembier, P., Sikora, T., eds.: Introduction to MPEG 7: Multi-
media Content Description Language. Wiley (2002)

3. Mahalanobis, P.: On the generalised distance in statistics. Proc. Nat. Inst. Sci.
India 12 (1936) 49–55

4. Lewis, G.P., Guerin, C.J., Anderson, D.H., to, B.M., Fisher, S.K.: Rapid changes
in the expression of glial cell proteins caused by experimental retinal detachment.
Am. J. of Ophtalmol. 118 (1994) 368–376

5. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision 40 (2000) 99–121

6. Werman, M., Peleg, S., Rosenfeld, A.: A distance metric for multi-dimensional
histograms. Computer, Vision, Graphics, and Image Proc. 32 (1985) 328–336

7. Peleg, S., Werman, M., Rom, H.: A unified approach to the change of resolution:
Space and gray-level. IEEE Trans. PAMI 11 (1989) 739–742

8. Levina, E., Bickel, P.: The earth mover’s distance is the Mallows distance: Some
insights from statistics. In: Proc. ICCV. Volume 2. (2001) 251–256

9. Stricker, M.A., Orengo, M.: Similarity of color images. In Niblack, C.W., Jain,
R.C., eds.: Storage and Retrieval for Image and Video Databases III. Volume 2420
of Proceedings of SPIE. (1995) 381–392

10. Grauman, K., Darrell, T.: Fast contour matching using approximate earth mover’s
distance. In: Proc. CVPR. (2004)

11. Lazebnik, S., Schmid, C., Ponce, J.: Sparse texture representation using affine-
invariant neighborhoods. In: Proc. CVPR. (2003)

12. Typke, R., Veltkamp, R., Wiering, F.: Searching notated polyphonic music using
transportation distances. In: Proc. Int. Conf. Multimedia. (2004) 128–135

13. Demirci, M.F., Shokoufandeh, A., Dickinson, S., Keselman, Y., Bretzner, L.: Many-
to-many feature matching using spherical coding of directed graphs. In: Proc.
European Conf. Computer Vision (ECCV). (2004)

14. Lavin, Y., Batra, R., Hesselink, L.: Feature comparisons of vector fields using earth
mover’s distance. In: Proc. of the Conference on Visualization. (1998) 103–109

15. Hillier, F.S., Lieberman, G.J.: Introduction to Mathematical Programming. 1st
edn. McGraw-Hill, New York (1990)

16. Klee, V., Minty, G.: How good is the simplex algorithm. In Shisha, O., ed.:
Inequalities. Volume III., New York, NY, Academic Press (1972) 159–175

Indexing Spatially Sensitive Distance Measures 883

17. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Proc. VLDB. (1998)
194–205

18. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proc. VLDB. (1997) 426–435

19. Ciaccia, P., Patella, M.: Bulk loading the M-tree. In: Proc. ADC. (1998)
20. Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: Proc. Internat.

Workshop on Statistical and Computational Theories of Vision. (2003)

	Introduction
	The Earth Mover's Distance
	Decomposing the EMD for Quicker Computation

	Multi-resolution Lower Bounds for the EMD
	Using Lower Bounds to Speed Up Similarity Search
	Sequential-Scan Algorithms
	Algorithm for Range Queries Using M-Tree
	Algorithm for k-NN Queries Using M-Tree
	Discussion

	Experimental Results
	Sequential-Scan Experiments
	M-Tree Experiments

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

