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Abstract
Given a large collection of medical images of several con-
ditions and treatments, how can we succinctly describe the
characteristics of each setting? For example, given a large
collection of retinal images from several different experi-
mental conditions (normal, detached, reattached, etc.), how
can data mining help biologists focus on important regions
in the images or on the differences between different exper-
imental conditions?

If the images were text documents, we could find the main
terms and concepts for each condition by existing IR meth-
ods (e.g., tf/idf and LSI). We propose something analogous,
but for the much more challenging case of an image col-
lection: We propose to automatically develop a visual vo-
cabulary by breaking images into n× n tiles and deriving
key tiles (“ViVos”) for each image and condition. We exper-
iment with numerous domain-independent ways of extract-
ing features from tiles (color histograms, textures, etc.), and
several ways of choosing characteristic tiles (PCA, ICA).

We perform experiments on two disparate biomedical
datasets. The quantitative measure of success is classifica-
tion accuracy: Our “ViVos” achieve high classification ac-
curacy (up to 83% for a nine-class problem on feline retinal
images). More importantly, qualitatively, our “ViVos” do
an excellent job as “visual vocabulary terms”: they have bi-
ological meaning, as corroborated by domain experts; they
help spot characteristic regions of images, exactly like text
vocabulary terms do for documents; and they highlight the
differences between pairs of images.

1 Introduction

We focus on the problem of summarizing and discover-
ing patterns in large collections of biomedical images. We
would like an automated method for processing the images
and constructing a visual vocabulary which is capable of
describing the semantics of the image content. Particularly,

(a) Normal (b) 3d

Figure 1. Examples of micrographs of (a) a normal retina
and (b) a retina after 3 days of detachment. The retinas were
labeled with antibodies to rhodopsin (red) and glial fibril-
lary acidic protein (GFAP, green). Please see the electronic
version of the article for color images.

we are interested in questions such as: “What are the in-
teresting regions in the image for further detailed investi-
gation?” and “What changes occur between images from
different pairs of classes?”

As a concrete example, consider the images in Figure 1.
They depict cross-sections of feline retinas—specifically,
showing the distributions of two different proteins—under
the experimental conditions “normal” and “3 days of de-
tachment.” Even a non-expert human can easily see that
each image consists of several vertical layers, despite the
fact that the location, texture, and color intensity of the pat-
terns in these layers vary from image to image. A trained bi-
ologist can interpret these observations and build hypothe-
ses about the biological processes that cause the differences.

This is exactly the goal of our effort: We want to build a
system that will automatically detect and highlight patterns
differentiating image classes, after processing hundreds or
thousands of pictures (with or without labels and times-
tamps). The automatic construction of a visual vocabulary
of these different patterns is not only important by itself, but
also a stepping stone for larger biological goals. Such a sys-
tem will be of great value to biologists, and could provide
valuable functions such as automated classification and sup-
porting various data mining tasks. We illustrate the power



of our proposed method on the following three problems:

Problem 1 Summarize an image automatically.

Problem 2 Identify patterns that distinguish image classes.

Problem 3 Highlight interesting regions in an image.

Biomedical images bring additional, subtle complica-
tions: (1) Some images may not be in the canonical orienta-
tion, or there may not be a canonical orientation at all. (The
latter is the case for one of our datasets, the Chinese ham-
ster ovary dataset.) (2) Even if we align the images as well
as possible, the same areas of the images will not always
contain the same kind of tissue because of individual varia-
tion. (3) Computer vision techniques such as segmentation
require domain-specific tuning to model the intricate texture
in the images, and it is not known whether these techniques
can spot biologically interesting regions. These are subtle,
but important issues that our automatic vocabulary creation
system has to tackle.

We would like a system that automatically creates a vi-
sual vocabulary and achieves the following goals: (1) Bi-
ological interpretations: The resulting visual terms should
have meaning for a domain expert. (2) Biological process
summarization: The vocabulary should help describe the
underlying biological process. (3) Generality: It should
work on multiple image sets, either color or gray-scale,
from different biological domains.

The major contributions of this paper are as follows:

• We introduce the idea of “tiles” for visual term gen-
eration, and successfully bypass issues such as image
orientation and registration.

• We propose a novel approach to group tiles into visual
terms, avoiding subtle problems, like non-Gaussianity,
that hurt other clustering and dimensionality reduction
methods. We call our automatically extracted visual
terms “ViVos.”

The paper is organized as follows. Section 2 describes
related work. In Section 3, we introduce our proposed
method for biomedical image classification and pattern dis-
covery. Classification results are presented in Section 4. Ex-
periments illustrating the biological interpretation of ViVos
appear in Section 5. Section 6 concludes the paper.

2 Background and Related Work

Biomedical images have become an extremely important
dataset for biology and medicine. Automated analysis tools
have the potential for changing the way in which biologi-
cal images are used to answer biological questions, either
for high-throughput identification of abnormal samples or
for early disease detection [7, 18, 19]. Two specific kinds
of biomedical images are studied in this paper: confocal

microscopy images of retina and fluorescence microscopy
images of Chinese Hamster Ovary (CHO) cells.

The retina contains neurons that respond to light and
transmid electrical signals to the brain via the optic nerve.
Multiple antibodies are used to localize the expression of
specific proteins in retinal cells and layers. The antibodies
are visualized by immunohistochemistry, using a confocal
microscope. The images can be used to follow a change
in the distribution of a specific protein in different exper-
imental conditions, or visualize specific cells across these
conditions. Multiple proteins can be visualized in a single
image, with each protein represented by a different color.

It is of biological interest to understand how a protein
changes expression and how the morphology of a specific
cell type changes across different experimental conditions
(e.g., an injury such as retinal detachment) or when differ-
ent treatments are used (e.g., oxygen administration). The
ability to discriminate and classify on the basis of patterns
(e.g., the intensity of antibody staining and texture produced
by this staining) can help identify differences and similari-
ties of various cellular processes.

The second kind of data in our study are fluorescence
microscopy images of subcellular structures of CHO cells.
These images show the localization of four proteins and the
cell DNA within the cellular compartments. This informa-
tion may be used to determine the functions of expressed
proteins, which remains one of the challenges of modern
biology [1].

2.1 Visual Vocabulary
A textual vocabulary consists of words that have distinct
meanings and serve as building blocks of larger semantic
constructs like sentences or paragraphs. To create an equiv-
alent visual vocabulary for images, previous work applied
transformation on image pixels to derive tokens that can
describe image contents effectively [22, 4]. However, an
image usually has tens of thousands of pixels. Due to this
high dimensionality, a large number of training images is
needed by pixel-based methods to obtain a meaningful vo-
cabulary. This has limited the application of these methods
to databases of small images.

One way to deal with this dimensionality curse is to ex-
tract a small number of features from image pixels. The
vocabulary construction algorithm is then applied to the ex-
tracted features to discover descriptive tokens. A feature
is usually extracted by filtering and summarizing pixel in-
formation. In many applications, these tokens have been
shown useful in capturing and conveying image properties,
under different names such as “blob,” “visterm,” “visual
keywords,” and so on. Examples of applications include
object detection [20] and retrieval [21], as well as image
classification [22, 4, 14] and captioning [5, 9].

Clustering algorithms or transformation-based methods



are other defenses against the curse of dimensionality. K-
means clustering has been applied to image segments [5, 9]
and the salient descriptor [21] for vocabulary construction.
Examples of transformation-based methods include prin-
cipal component analysis (PCA) [10, 22, 14] and wavelet
transforms [20]. Recently, independent component analysis
(ICA) [8] has been used in face recognition [4], yielding fa-
cial templates. Like the feature extraction approaches, these
methods also have problems with orientation and registra-
tion issues, as they rely on global image features.

In this paper, we present a method that discovers a mean-
ingful vocabulary from biomedical images. The proposed
method is based on “tiles” of an image, and successfully
avoids issues such as registration and dimensionality curse.
We use the standard MPEG-7 features color structure de-
scriptor (CSD), color layout descriptor (CLD) and homo-
geneous texture descriptor (HTD) [16]. The CSD is an n-
dimensional color histogram (n is 256, 128, 64, or 32), but
it also takes into account the local spatial structure of the
color. For each position of a sliding structural element, if a
color is present, its corresponding bin is incremented. The
CLD is a compact representation of the overall spatial lay-
out of the colors, and uses the discrete cosine transform to
extract periodic spatial characteristics in blocks of an im-
age. The HTD characterizes region texture using mean en-
ergy and energy deviation of the whole image, both in pixel
space and in frequency space (Gabor functions along 6 ori-
entations and 5 scales).

Alternatively, there is work on constructing visual vo-
cabulary [17, 15] with a human in the loop, with the goal of
constructing a vocabulary that better captures human per-
ception. Human experts are either asked to identify criteria
that they used to classify different images [17], or directly
give labels to different patterns [15]. The vocabulary is then
generated according to the given criteria and labels. These
approaches are supervised, with human feedback as input
to the construction algorithms. In contrast, our proposed
method presented in this paper is unsupervised: The image
labels are used only after the ViVos are constructed, when
we evaluate them using classification.

3 Proposed Method for Symbolic
Representation of Images

In this section, we introduce our proposed method for trans-
forming images into their symbolic representations. The al-
gorithm is given in Figure 2, and uses the symbols listed in
Table 1. The algorithm consists of five steps.

The first step partitions the images into non-overlapping
tiles. The optimal tile size depends on the nature of the im-
ages. The tiles must be large enough to capture the charac-
teristic textures of the images. On the other hand, they can-
not be too large. For instance, in order to recognize the red

Input: A set of n images I = {I1, . . . , In}.
Output: Visual vocabulary (ViVos) V = {v1, . . . ,vm}.

ViVo-vectors of the n images {v(I1), . . . ,v(In)}.
Algorithm:
1. Partition each image Ii into si non-overlapping tiles
2. For each tile j ∈ {1, . . . ,si} in each image Ii, extract t̃i,j
3. Generate visual vocabulary V = gen vv(∪n

i=1t̃i,j)
Also, compute P, the PCA basis for all t̃i,j’s.

4. For each tile j ∈ {1, . . . ,si} in each image Ii,
compute the ViVo-vector v( t̃i,j) = comp vivo(t̃i,j, V , P)

5. For each image Ii, compute the ViVo-vector of Ii:
v(Ii) = summarize({t̃i,j : j = 1, . . . ,si})

Figure 2. Algorithm for constructing a visual vocabulary
from a set of images.

Symbol Meaning

V Set of m ViVos: V ={v1, . . . ,vm}
m′ Number of ICA basis vectors m′ = m/2
t̃i,j j-th tile (or, tile-vector) of image Ii

v(t̃i,j) m-dimensional ViVo-vector of tile t̃i,j
v(Ii) m-dimensional ViVo-vector of image Ii

fk The k-th element of v(t̃i,j)
vk(Ii) The k-th element of v(Ii)
c(I) Condition of an image I
Si,k Set of {vk(I)|∀I,c(I) = ci} for a condition ci

T (vi) Set of representative tiles of ViVo vi

R (ci) Set of representative ViVos of condition ci

Table 1. Symbols used in this paper.

layer in Figure 1(a), the tile size should not be much larger
than the width of the layer. We use a tile size of 64-by-64
pixels, so each retinal image has 8×12 tiles, and each sub-
cellular protein localization image has 8×6 or 8×8 tiles.

In the second step, a feature vector is extracted from each
tile, representing its image content. We have conducted
experiments using features such as the color structure de-
scriptor (CSD), color layout descriptor (CLD), and homo-
geneous texture descriptor (HTD). The vector representing
a tile using features of, say CSD, is called a tile-vector of
the CSD. More details are given in Section 4.

The third step derives a set of symbols from the feature
vectors of all the tiles of all the images. In text processing,
there is a similar issue of representing documents by topics.
The most popular method for finding text topics is latent se-
mantic indexing (LSI) [3], which is based on analysis that
resembles PCA. Given a set of data points, LSI/PCA finds a
set of orthogonal (basis) vectors that best describe the data
distribution with respect to minimized L2 projection error.
Each of these basis vectors is considered a topic in the doc-
ument set, and can be used to group documents by topics.



−20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

PC 1

P
C

 2

ICA
PCA

P
1
 

P
2

I
1
 I

2
 

I
3
 

−20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

PC 1

P
C

 2

Tile group 1
Tile group 2
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Figure 3. ViVos and their tile groups. Each point corre-
sponds to a tile. (a) Basis vectors (P1,P2,I1,I2,I3) are
scaled for visualization. (b) Two tiles groups are shown
here. Representative tiles of the two groups are shown in
triangles. (Figures look best in color.)

Our approach is similar: We derive a set of symbols by ap-
plying ICA or PCA to the feature vectors. Each basis vector
found by ICA or PCA becomes a symbol. We call the sym-
bols ViVos and the set of symbols a visual vocabulary.

Figure 3(a) shows the distribution of the tile-vectors of
the CSD, projected in the space spanned by the two PCA
basis vectors with the highest eigenvalues. The data dis-
tribution displays several characteristic patterns—“arms”—
on which points are located. None of the PCA basis vectors
(dashed lines anchored at 〈0,0〉: P1,P2) finds these charac-
teristic arms. On the other hand, if we project the ICA basis
vectors onto this space (solid lines: I1,I2,I3), they clearly
capture the patterns in our data. It is preferable to use the
ICA basis vectors as symbols because they represent more
precisely the different aspects of the data. We note that only
three ICA basis vectors are shown because the rest of them
are approximately orthogonal to the space displayed.

Relating Figure 3 to our algorithm in Figure 2, each point
is a t̃i,j in step 2 of the algorithm. Function gen vv() in step 3
computes the visual vocabulary which is defined according
to the set of the ICA basis vectors. Intuitively, an ICA basis
vector defines two ViVos, one along the positive direction
of the vector, another along the negative direction.

Formally, let T0 be a t-by-d matrix, where t is the num-
ber of tiles from all training images, and d is the number
of features extracted from each tile. Each row of T0 corre-
sponds to a tile-vector t̃i,j, with the overall mean subtracted.
Suppose we want to generate m ViVos. We first reduce the
dimensionality of T0 from d to m′ = m/2, using PCA, yield-
ing a t-by-m′ matrix T. Next, ICA is applied in order to de-
compose T into two matrices H[t×m′] and B[m′×m′] such that
T = HB. The rows of B are the ICA basis vectors (solid
lines in Figure 3(a)). Considering the positive and negative
directions of each basis vector, the m ′ ICA basis vectors
would define m = 2m′ ViVos, which are the outputs of the
function gen vv().

How do we determine the number of ViVos? We follow
the rule of thumb, and make m ′ =m/2 be the dimensionality
which preserves 95% spread/energy of the distribution.

With the ViVos ready, we can use them to represent an
image. We first represent each d-dim tile-vector in terms of
ViVos by projecting a tile-vector to the m ′-dim PCA space
and then to the m′-dim ICA space. The positive and neg-
ative projection coefficients are then considered separately,
yielding the 2m′-dim ViVo-vector of a tile. This done by
comp vivo() in the fourth step of the algorithm in Figure 2.
The m = 2m′ coefficients in the ViVo-vector of a tile also
indicate the contributions of each of the m ViVos to the tile.

In the fifth and final step, each image is expressed as a
combination of its (reformulated) tiles. We do this by sim-
ply adding up the ViVo-vectors of the tiles in an image. This
yields a good description of the entire image because ICA
produces ViVos that do not “interfere” with each other. That
is, ICA makes the columns of H (coefficients of the basis
vectors, equivalently, contribution of each ViVo to the im-
age content) as independent as possible [8]. Definition 1
summarizes the outputs of our proposed method.

Definition 1 (ViVo and ViVo-vector) A ViVo is defined by
either the positive or the negative direction of an ICA ba-
sis vector, and represents a characteristic pattern in im-
age tiles. The ViVo-vector of a tile t̃i,j is a vector v(t̃i,j) =
f1, . . . , fm], where fi indicates the contibutions of the i-th
ViVo in describing the tile. The ViVo-vector of an image is
defined as the sum of the ViVo-vectors of all its tiles.

Representative tiles of a ViVo. A ViVo corresponds to a
direction defined by a basis vector, and is not exactly equal
to any of the original tiles. In order to visualize a ViVo, we
represent it by a tile that strongly expresses the characteris-
tics of that ViVo.

We first group tiles that are majorly located along the
same ViVo direction together as a “tile group”. Formally,
let the ViVo-vector of a tile t̃i,j be v(t̃i,j)=[ f1, . . . , fm]. We
say that the tile t̃i,j belongs to ViVo vk, if the element with
largest magnitude is fk, i.e., k = argmaxk′ | fk′ |. The tile
group of a ViVo vk is the set of tiles that belong to vk. Fig-
ure 3(b) visualizes the tile groups of two ViVos on the 2-D
plane defined by the PCA basis vectors (P1,P2).

The representative tiles of a ViVo vk, T (vk), are then se-
lected from its tile group (essentially the tiles at the “tip”
of the tile group). The top 5 representative tiles of the two
ViVos in Figure 3(b) are shown in light triangles. The top
representative tile of ViVo vk has the maximum |ck| value
among all tiles in vk’s tile group. In Section 5.1, we show
the representative tiles of our ViVos and discuss their bio-
logical interpretation.

4 Quantitative Evaluation: Classification

The experiments in this section evaluate the combinations
of image features and ViVo generation methods for ViVo
construction. In these experiments, our goal is to find the



Feature Dim. Accuracy Std. dev.

Original CSD 512 0.838 0.044
14 ViVos from CSD 14 0.832 0.042
12 ViVos from CSD 12 0.826 0.038

Original CLD 24 0.346 0.049
24 ViVos from CLD 24 0.634 0.023

Original HTD 124 0.758 0.048
12 ViVos from HTD 12 0.782 0.019

Table 2. Classification accuracies for combinations of fea-
ture and ViVo set size. All ViVo sets reported here are based
on ICA.

best representation of the images in the symbolic space and
ensure that classification accuracies obtained using these
symbols are close to the best accuracy that we could obtain
with the raw features.

Biologists have chosen experimental conditions which
correspond to different stages of the biological process.
Thus, a combination that successfully classifies images is
also likely to be a good choice for other analyses, such as
the qualitative analyses described in Section 5, where we
investigate the ability of the visual vocabulary to reveal bi-
ologically meaningful patterns.

Classification experiments were performed on two
datasets: one dataset of 433 retinal micrographs, and an-
other dataset of 327 fluorescence micrographs showing sub-
cellular localization patterns of proteins in CHO cells. In
the following, we refer to the datasets by their cardinality:
the 433 dataset and the 327 dataset.

4.1 Classification of Retinal Images
The 433 dataset contains retinal images from the UCSB
BioImage database (http://bioimage.ucsb.edu/), which con-
tains images of retinas detached for either 1 day (label 1d),
3 days (3d), 7 days (7d), 28 days (28d), or 3 months
(3m). There are also images of retinas after treatment,
such as reattached for 3 days after 1 hour of detachment
(1h3dr), reattached for 28 days after 3 days of detachment
(3d28dr), or exposed to 70% oxygen for 6 days after 1
day of detachment (1d6dO2), and images of control tissues
(n) [6, 13, 12].

We experimented extensively with different features and
vocabulary sizes. Features are extracted separately for the
red and green channels and then concatenated. The chan-
nels show the staining by two antibodies: anti-rod opsin
(red) and anti-GFAP (green). The number of ViVos should
be small, as large vocabularies contain redundant terms and
become difficult for domain experts to interpret. Preserv-
ing 95% of the energy resulted in 14, 24, and 12 ViVos for
CSD, CLD, and HTD, respectively. The classification accu-
racies, reported in Table 2, are from 5-fold cross-validation

(a) Giantin (b) Hoechst

(c) LAMP2 (d) NOP4 (e) Tubulin

Figure 4. Examples from the dataset of 327 fluorescence mi-
crographs of subcellular protein localization patterns. The
images have been enhanced in order to look better in print.

using SVM [2] with linear kernels. SVM with polynomial
kernels and a k-NN (k = 1, 3, or 5) classifier produced
results that were not significantly different. ViVos from
CSD perform significantly better than ViVos from CLD
(p < 0.0001) and also significantly better than ViVos from
HTD (p = 0.0492). Further, manual inspection of HTD
ViVos did not reveal better biological interpretations.

Two of the 14 CSD ViVos were removed because none
of the images had high coefficients for them. Those two
ViVos had no interesting biological interpretation either. As
expected, removing these two ViVos (using only 12 ViVos)
resulted in insignificantly (p = 0.8187) smaller classifica-
tion accuracy compared to the 14 CSD ViVos (Table 2). The
difference from the original CSD features is also insignifi-
cant (p = 0.6567). We therefore choose to use the 12 CSD
ViVos as our visual vocabulary.

4.2 Classification of Subcellular Protein
Localization Images

In order to assess the generality of our visual vocabulary
approach, we also applied our method to classify 327 fluo-
rescence microscopy images of subcellular protein localiza-
tion patterns [1]. Example micrographs depicting the cell
DNA and four protein types are shown in Figure 4. We par-
titioned the data set into training and test sets in the same
way as Boland et al. [1].

We note that although these images are very different
from the retinal images, the combination of CSD and ICA
still classifies 84% of the images correctly. The 1-NN
classifier achieves 100% accuracy on 3 classes: Giantin,
Hoechst, and NOP4. The training images of class LAMP2
in the data set have size 512-by-512,which is different from
that of the others, 512-by-382. Due to this discrepancy,
class LAMP2 is classified at 83%, and around half of Tubu-
lin images are classified as LAMP2.



(a) ViVo 1 (b) ViVo 2 (c) ViVo 3 (d) ViVo 4

(e) ViVo 5 (e) ViVo 6 (f) ViVo 7 (g) ViVo 8

(i) ViVo 9 (j) ViVo 10 (k) ViVo 11 (l) ViVo 12

Figure 5. Our visual vocabulary. The vocabulary is auto-
matically constructed from a set of images. Please see the
electronic version of the article for color images.

To summarize, our classification experiments show that
the symbolic ViVo representation captures well the contents
of microscopy images of two different kinds. Thus, we are
confident that the method is applicable to a wider range of
biomedical images.

5 Qualitative Evaluation:
Data Mining Using ViVos

Deriving a visual vocabulary for image content description
opens up many exciting data mining applications. In this
section, we describe our proposed methods for answering
the three problems we introduced in Section 1. We first
discuss the biological interpretation of the ViVos in Sec-
tion 5.1 and show that the proposed method correctly sum-
marizes a biomedical image automatically (Problem 1). An
automated method for spotting differential patterns between
classes is introduced in Section 5.2 (Problem 2). Several
observations on the class-distinguishing patterns are also
discussed. Finally, in Section 5.3, we describe a method
to automatically highlight interesting regions in an image
(Problem 3).

5.1 Biological Interpretation of ViVos

The representative tiles of ViVos 2, 3, 4, 7, and 12 shown
in Figure 5 demonstrate the hypertrophy of Müller cells.
These ViVos correctly discriminate various morphological
changes of Müller cells. The green patterns in these repre-
sentative tiles is due to staining produced by immunohisto-
chemistry with an antibody to GFAP, a protein found in glial
cells (including Müller cells). Our visual vocabulary also
captures the normal expression of GFAP in the inner retina,
represented by ViVo 1. The Müller cells have been shown

to hypertrophy following experimental retinal detachment.
Understanding how they hypertrophy and change morphol-
ogy is important in understanding how these cells can ulti-
mately form glial scars, which can inhibit a recovery of the
nervous system from injury.

Also, our ViVos correctly place tiles into different
groups, according to the different anti-rod opsin staining
which may due to functional consequences following in-
jury. In an uninjured retina, anti-rod opsin (shown in red)
stains the outer segments of the rod photoreceptors, which
are responsible for converting light into an electrical signal
and are vital to vision. ViVos 5 and 10 show a typical stain-
ing pattern for an uninjured retina, where healthy outer seg-
ments are stained. However, following detachment or other
injury to the retina, outer segment degeneration can occur
(ViVo 9). Another consequence of retinal detachment can
be a re-distribution of rod opsin from the outer segments of
these cells to the cell bodies (ViVo 8).

As described above, both the re-distribution of rod opsin
and the Müller cell hypertrophy are consequences of reti-
nal detachment. It is of interest to understand how these
processes are related. ViVo 11 captures the situation when
the two processes co-occur. Being able to sample a large
number of images that have these processes spatially over-
lapping will be important to understanding their relation-
ship. ViVo 6 is rod photoreceptor cell bodies with only
background labeling.

5.2 Finding Most Discriminative ViVos
We are interested in identifying ViVos that show differences
between different retinal experimental conditions, including
treatments. Let images {I1, . . . , In} be the training images
of condition ci. Suppose that our analysis in Section 3 sug-
gests that m ViVos should be used. Following the algorithm
outlined in Figure 2, we can represent an image I as an m-
dimensional ViVo-vector v(I). The k-th element of a ViVo-
vector, vk(I), gives the expression level of ViVo vk in the
image I. Let Sik={vk(I1), . . . ,vk(In)} be a set that contains
the k-th elements of all image ViVo-vectors in condition c i.

To determine if a ViVo vk is a discriminative ViVo for
two conditions ci and c j, we perform an analysis of variance
(ANOVA) test, followed by a multiple comparison [11]. If
the 95% confidence intervals of the true means of S ik and
S jk do not intersect, then the means are not significantly
different, and we say that ViVo vk discriminates conditions
ci and c j, i.e., vk is a discriminative ViVo for ci and c j. The
separation between Sik and S jk indicates the “discriminating
power” of ViVo vk.

Figure 6 shows the conditions as boxes and the discrimi-
native ViVos on edges connecting pairs of conditions that
are of biological interest. ViVos 6 and 8 discriminate n
from 1d and 1d from 3d. The two ViVos represent rod
photoreceptor cell bodies with only background labeling
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Figure 6. Pairs of conditions and the corresponding discriminative ViVos. There is an edge in the graph for each pair of conditions
that is important from a biological point of view. The numbers on each edge indicate the ViVos that contribute the most to the
differences between the conditions connected by that edge. The ViVos are specified in the order of their discriminating power.

and with redistribution of rod opsin, respectively, indicat-
ing that the redistribution of rod opsin is an important effect
in the short-term detachment. Note also that ViVo 8 dis-
tinguishes 1d6dO2 from 7d. This suggests that there are
cellular changes associated with this oxygen treatment, and
the ViVo technique can be used for this type of comparison.

The ViVos that represent Müller cell hypertrophy (ViVo
2, 3, 4, 7, and 12) discriminate n from all other conditions.
We note that ViVo 1, which represents GFAP labeling in the
inner retina in both control (n) and detached conditions, is
present in all conditions, and therefore cannot discriminate
any of the pairs in Figure 6. In addition, several ViVos dis-
criminate between 3d28dr and 28d, and 1h3dr and 3d,
suggesting cellular effects of the surgical procedure. Inter-
estingly, there are no ViVos that discriminate between 7d
and 28d detachments, suggesting that the effects of long-
term detachment have occurred by 7 days.

Although these observations are generated automatically
by an unsupervised tool, they correspond to observations
and biological theory of the underlying cellular processes.

5.3 Highlighting Interesting Regions by ViVos
In this section, we propose a method to find class-relevant
ViVos and then use this method to highlight interesting re-
gions in images of a particular class.

In order to determine which condition a ViVo belongs to,
we examine its representative tiles and determine the most
popular condition among them (majority voting). We define
the condition of a tile to be that of the image from which it
was extracted, i.e., c(t̃i,j) = c(Ii). Intuitively, for a ViVo,
the more its representative tiles are present in images of a
condition, the more relevant the ViVo is to that condition.

Formally, the set R (ck) of representative ViVos of a con-
dition ck is defined as

R (ck)=

{
vr : ∑

t∈T (vr)
I(c(t) = ck) > ∑

t∈T (vr)
I(c(t) = cq),∀cq �= ck

}
,

(a) ViVo 1 highlighted (b) ViVo 10 highlighted

Figure 7. Two examples of images with ViVo-annotations
(highlighting) added. (a) GFAP-labeling in the inner retina
(28d); (b) rod photoreceptor recovered as a result of reat-
tachment treatment (3d28dr).

where t is a tile, and I(p) is an indicator function that is 1 if
the predicate p is true, and 0 otherwise. The representative
ViVos of a condition ck can be used to annotate images of
that particular condition in order to highlight the regions
with potential biological interpretations.

Figure 7(a) shows an annotated image of a retina de-
tached for 28 days. The GFAP labeling in the inner retina is
highlighted by ViVo 1 (see Figure 5(a)).

Figure 7(b) shows an annotated image of a retina de-
tached for 3 days and then reattached for 28 days. The an-
notation algorithm highlighted the outer segments of the rod
photoreceptors with ViVo 10 (see Figure 5(j)). As pointed
out in Section 5.1, ViVo 10 represents healthy outer seg-
ments. In the retina depicted in Figure 7(b), the outer seg-
ments have indeed recovered from the degeneration caused
by detachment. This recovery of outer segments has previ-
ously been observed [6], and confirms that ViVos can rec-
ognize image regions that are consistent with previous bio-
logical interpretations.

6 Conclusion

Mining biomedical images is an important problem because
of the availability of high-throughput imaging, the applica-
bility to medicine and health care, and the ability of images



to reveal spatio-temporal information not readily available
in other data sources such as genomic sequences, protein
structures and microarrays.

We focus on the problem of describing a collection of
biomedical images succinctly (Problem 1). Our main con-
tribution is to propose an automatic, domain-independent
method to derive meaningful, characteristic tiles (ViVos),
leading to a visual vocabulary (Section 3). We apply our
technique to a collection of retinal images and validate it by
showing that the resulting ViVos correspond to biological
concepts (Section 5.1).

Using ViVos, we propose two new data mining tech-
niques. The first (Section 5.2) mines a large collection of
images for patterns that distinguish one class from another
(Problem 2). The second technique (Section 5.3) automati-
cally highlights important parts of an image that might oth-
erwise go unnoticed in a large image collection (Problem 3).

The conclusions are as follows:

• Biological Significance: The terms of our visual vo-
cabulary correspond to concepts biologists use when
describing images and biological processes.

• Quantitative Evaluation: Our ViVo-tiles are success-
ful in classifying images, with accuracies of 80% and
above. This gives us confidence that the proposed
visual vocabulary captures the essential contents of
biomedical images.

• Generality: We successfully applied our technique to
two diverse classes of images: localization of different
proteins in the retina, and subcellular localization of
proteins in cells. We believe it will be applicable to
other biomedical images, such as X-ray images, MRI
images, and electron micrographs.

• Biological Process Summarization: Data mining tech-
niques can use the visual vocabulary to describe the es-
sential differences between classes. These techniques
are unsupervised, and allow biologists to screen large
image databases for interesting patterns.
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