
2007-02-01 10:01:30L7 - Types

1

Why types?

Untyped languages

The programmer sees just words of memory

Drawbacks:

Need to remember which words are integers, floats, and pointers

Need to pick the correct operation

…and if we mess up it can have disasterous, undefined consequences

Most assembly languages are untyped

Example: x86 machine code

opcode MUL: unsigned multiplication

opcode IMUL: signed integer multiplication

opcode FMUL: multiply floating point

opcode FIMUL: multiply integer

Need to load into proper register to signify size (byte, word, double)

Type safety

A program is type safe if it is guaranteed to have no type errors, i.e., it is 

guaranteed that its operations always apply to operands of the correct type.

A language is type safe if any program written in the language is type safe.

Benefits of types

Detect some programmer errors

Trying to multiply a string and a number

Trying to add a character and a number

Trying to treat an integer as a Customer object

Serve as documentation

Specify the interface to a reusable module of code

Hides the underlying representation

Hides the details of a machine

Hides the details of a module implementation

More convenient notation

Can multiply numbers of any kind with the same "*" operator

Can print or serialize objects of any kind, without saying what it is

What is a type?

Set of values

Allowed operations

Elementary types and user-defined types

Elementary types

Built into the language

One step above the machine

Abstract away from the details of the machine

Example: A Java int is a 32-bit, two-complement integer

Example: A Common Lisp integer is a infinite-size, two-complement 

integer



2007-02-01 10:01:30L7 - Types

2

Elementary types and user-defined types

User-defined types (composite types)

Defined using constructors

Arrays, records, sets, variant records, pointers

Type systems

What is a type system?

The set of rules used by a language to structure and organize its collection of 

types.

1. Elementary types and constructors for new types

2. Rules for determining types of expressions

3. Rules for type equivalence and conversion

Dimensions of the design space for type systems

Binding time: static vs. dynamic

Static: The type of every value can be determined at compile time

(For convenience, we include link time in compile time)

Explicit typing: Programmer supplies types via type declarations for each 

variable.

Example: Epsilon, C, Java

Type inference: The compiler implies the most general types

Example: ML, Haskell

Dynamic: The type of some values must be checked at run time

Even in a dynamically typed language, many types can be determined at 

compile time by type inference.

Thus, performance hit from dynamic type checking need not be large.

Programmer may supply optional type declartions in inner loops of 

performance-critical code.

Example: The CMU Common Lisp compiler 

Examples: APL, SNOBOL, Lisp, most scripting languages

Strong vs. weak typing

Strong typing

A type system is strong if it guarantees type safety.

A language with a strong type system is a strongly typed language.

Is a statically typed language necessarily strongly typed?

Is a strongly typed language necessarily statically typed?

Type compatibility/type equivalence

Name compatibility

Definition: Two types T1 and T2 are name compatible if T1 = T2.

Subtypes (Pascal/Ada):

Di!erent subtypes of a given type are considered to be compatible 

among themselves and with the supertype.

Example: type age = 0 .. maxint;

Ada subtypes do not define a new type: All values of all subtypes of 

INTEGER are of type INTEGER.

Structural compatibility



2007-02-01 10:01:30L7 - Types

3

Dimensions of the design space for type systems

Type compatibility/type equivalence

Structural compatibility

Definition: Two types T1 and T2 are structurally compatible if

They are name compatible, or

They are defined by applying the same type constructor to structurally 

compatible types.

Example 1: C

typedef int customer_id;

typedef int car_id;

Can pass a customer_id wherever a product_id is required.

Example 2: C

typedef struct { char *name, int age } customer;

typedef struct { char *make, int price } car;

Cannot pass a customer struct where a product struct is required.

Example 2: Haskell

type Customer = (String, Int)

type Car = (String, Int)

beater :: Car

beater = ("Honda", 3000)

make :: Car -> String

make (make, price) = make

deadbeat :: Customer

deadbeat = ("John Doe", 42)

name :: Customer -> String

name (name, age) = name

name(deadbeat) = "John Doe"

name(beater) = "Honda"

Can pass a Car wherever a Customer is required.

Type conversion

Coercions: Automatic conversions

float f = 3 + 4.0;

Ada does not have automatic conversions

i := INTEGER(4.0);

Javascript converts pretty much everything

"4" + 4 = 8

Casting: explicit conversions

int i = (int)4.0;

Going "around" the type system (untyped semantics)

Monomorphic types vs. polymorphic types

Simple, strong type system:

Every constant, variable, and routine has a declared type.



2007-02-01 10:01:30L7 - Types

4

Dimensions of the design space for type systems

Monomorphic types vs. polymorphic types

Simple, strong type system:

Every operation requires an operand of that exact type.

Such a system is called monomorphic (Greek: "single shape")

Every object belongs to one and only one type

Polymorphism: A value has more than one type

Example:

Integer is also Number; Float is also Number

Can use Integers and Floats wherever Numbers are required

Polymorphic features in most or all languages

Type compatibility and coercion move us away from string monomorphism

Classification of polymorphic features:

Polymorphism

Universal

Parametric

Generic functions

Can be applied to values of any type

Function that reverses a list can work on lists of any type.

myreverse :: [a] -> [a]

myreverse = foldl (flip (:)) []

Because the >= works on any ordinal type, a function that 

computes the max of two arguments can work on arguments of 

any ordinal type.

mymax :: Ord t => (t, t) -> t

mymax (a, b)

| a >= b = a

| otherwise = b

Ada and C++ fake this with templates, but it's not the same; 

should be considered ad-hoc polymorphism.

Inclusion

Subtyping

Example: Java

Data structures like Vector work on any subtype of Object

They are, however, treated like Objects, and need to be casted 

back to their subtype when retrieved from the Vector. 

Ad hoc

Overloading

The + operator in C can be used with integers or floats.

Purely a syntactic convenience: Bound to "int+" or "float+" 

depending on the context.

Coercion

3 + 4.0 in C

3 coerced into 3.0 before the appropriate overloaded + operator is 

applied.

Reading assignment for next time

Rest of Chapter 3


