L7 - Types 2007-02-01 10:01:30
Why types?
e Untyped languages
e The programmer sees just words of memory
e Drawbacks:
¢ Need to remember which words are integers, floats, and pointers
e Need to pick the correct operation
e _..and if we mess up it can have disasterous, undefined consequences
® Most assembly languages are untyped
e Example: x86 machine code
opcode MUL: unsigned multiplication
opcode IMUL: signed integer multiplication
opcode FMUL: multiply floating point
opcode FIMUL: multiply integer
e Need to load into proper register to signify size (byte, word, double)
e Type safety
e A program is type safe if it is guaranteed to have no type errors, i.e., it is
guaranteed that its operations always apply to operands of the correct type.
e A language is type safe if any program written in the language is type safe.
Benefits of types
e Detect some programmer errors
e Trying to multiply a string and a number
e Trying to add a character and a number
® Trying to treat an integer as a Customer object
e Serve as documentation
e Specify the interface to a reusable module of code
e Hides the underlying representation
e Hides the details of a machine
e Hides the details of a module implementation
e More convenient notation
e Can multiply numbers of any kind with the same operator
e Can print or serialize objects of any kind, without saying what it is
What is a type?
e Set of values
e Allowed operations
Elementary types and user-defined types
e Elementary types
e Built into the language
® One step above the machine
e Abstract away from the details of the machine
e Example: A Java int is a 32-bit, two-complement integer

e Example: A Common Lisp integer is a infinite-size, two-complement
integer

moymn
x

L7 - Types 2007-02-01 10:01:30

e User-defined types (composite types)
e Defined using constructors
e Arrays, records, sets, variant records, pointers
Type systems
e What is a type system?
e The set of rules used by a language to structure and organize its collection of
types.
e 1. Elementary types and constructors for new types
e 2. Rules for determining types of expressions
e 3. Rules for type equivalence and conversion
Dimensions of the design space for type systems
¢ Binding time: static vs. dynamic
e Static: The type of every value can be determined at compile time
® (For convenience, we include link time in compile time)

e Explicit typing: Programmer supplies types via type declarations for each
variable.

e Example: Epsilon, C, Java
e Type inference: The compiler implies the most general types
e Example: ML, Haskell
e Dynamic: The type of some values must be checked at run time

e Even in a dynamically typed language, many types can be determined at
compile time by type inference.

e Thus, performance hit from dynamic type checking need not be large.

e Programmer may supply optional type declartions in inner loops of
performance-critical code.

e Example: The CMU Common Lisp compiler
e Examples: APL, SNOBOL, Lisp, most scripting languages
e Strong vs. weak typing
e Strong typing
e A type system is strong if it guarantees type safety.
e A language with a strong type system is a strongly typed language.
® |s a statically typed language necessarily strongly typed?
® |s a strongly typed language necessarily statically typed?
e Type compatibility/type equivalence
¢ Name compatibility
e Definition: Two types T1 and T2 are name compatible if T1 = T2.
e Subtypes (Pascal/Ada):
e Different subtypes of a given type are considered to be compatible
among themselves and with the supertype.
e Example: type age = 0 .. maxint;

e Ada subtypes do not define a new type: All values of all subtypes of
INTEGER are of type INTEGER.

e Structural compatibility

L7 - Types

e They are name compatible, or

Definition: Two types T1 and T2 are structurally compatible if

2007-02-01 10:01:30

e They are defined by applying the same type constructor to structurally

compatible types.
Example 1: C
e typedef int customer_id;
e typedef int car_id;

e (Can pass a customer_id wherever a product_id is required.

Example 2: C

e typedef struct { char *name, int age } customer;
e typedef struct { char *make, int price } car;

e Cannot pass a customer struct where a product struct is required.

Example 2: Haskell
type Customer = (String, Int)
type Car = (String, Int)

beater :: Car
beater = ("Honda", 3000)

make :: Car -> String
make (make, price) = make

deadbeat :; Customer
deadbeat = ("John Doe", 42)

name :: Customer -> String
name (name, age) = name

name(deadbeat) = "John Doe"
name(beater) = "Honda"

e Can pass a Car wherever a Customer is required.

e Type conversion
e (Coercions: Automatic conversions
o floatf =3 + 4.0;

e Ada does not have automatic conversions

e j:= INTEGER(4.0);

® Javascript converts pretty much everything

° ||4|| + 4 — 8
e (asting: explicit conversions
® inti=(int)4.0;

e Going "around" the type system (untyped semantics)

e Monomorphic types vs. polymorphic types
e Simple, strong type system:

e Every constant, variable, and routine has a declared type.

L7 - Types 2007-02-01 10:01:30

e Every operation requires an operand of that exact type.

® Such a system is called monomorphic (Greek: "single shape")
Every object belongs to one and only one type
Polymorphism: A value has more than one type
e Example:
® Integer is also Number; Float is also Number
e Can use Integers and Floats wherever Numbers are required
Polymorphic features in most or all languages
e Type compatibility and coercion move us away from string monomorphism
Classification of polymorphic features:
¢ Polymorphism
e Universal
e Parametric
e Generic functions
e Can be applied to values of any type
e Function that reverses a list can work on lists of any type.
myreverse :: [a] -> [a]
myreverse = foldl (flip (%)) []

e Because the >= works on any ordinal type, a function that
computes the max of two arguments can work on arguments of
any ordinal type.

mymax :: Ord t => (t, t) -> t
mymax (a, b)

|la>=b=a

| otherwise = b

e Ada and C++ fake this with templates, but it's not the same;
should be considered ad-hoc polymorphism.

¢ Inclusion
e Subtyping
e Example: Java

e Data structures like Vector work on any subtype of Object

e They are, however, treated like Objects, and need to be casted
back to their subtype when retrieved from the Vector.

e Ad hoc
e Overloading
® The + operator in C can be used with integers or floats.
® Purely a syntactic convenience: Bound to "int+" or "float+"
depending on the context.
e Coercion
e 3+40inC
e 3 coerced into 3.0 before the appropriate overloaded + operator is
applied.
Reading assignment for next time
e Rest of Chapter 3

